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Using data from sensors and other
technologies to enhance dairy cattle

breeding programs
By Luiz Brito
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Milk Yield (pounds)
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The Role of Genetics in Dairy Production

Change in Holstein Milk Production (1957-2022)

v More milk with fewer cows: > efficiency
v" Permanent and cumulative improvements
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Milk yield (Ibs)
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25000, . .. Genetic tools have reversed cow fertility decline

.. . . L30

Kristen Parker Gaddis April 25, 2023

A myth in U.S. Holstein breeding is the continued decrease in dairy cow fertility as milk production has
increased. What is the status on this statement today?

(o) @yes Aoueubaig

200001 K e [25 It is true that U.S. Holsteins experienced a decline in Kristen Gaddis
R fertility until 2000 during decades of tremendous Geneticist / Council on Dairy Cattle Breeding
Lt * production gains. It is also true that production and
. fertility are negatively correlated in farm animals.

. k20 Said another way, higher-producing cows are
15000+ .. o genetically predisposed for decreased reproductive
’ efficiency.

Email Kristen Gaddis
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Source: CDCB, 2025 (https://uscdch.com/impact/) What is happening with traits that are

not currently being measured?
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More Balanced (Sustainable) Breeding Goals
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Sensors and Other Technologies
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Sensors and Other Technologies

v" Improve the quality of life of dairy farmers (tse et al., 2017; Hogan et al., 2022)
v Enhance labor output and labor cost over time (Liu et al., 2023)
v Increase reproduction efficiency and on-farm management (Reith and Hoy, 2018)

v Contribute to improving animal health, welfare, and productive efficiency (pawkins, 2021;

Simitzis et al., 2021)

v Generate high-frequency, objective, and large-scale phenotypes, which are essential

for breeding purposes (rito et al., 2020; 2025)
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Challenges More Related to Breeding Purposes

PLF market fragmentation and inconsistency: multiple devices and brands with
different algorithms for the same trait (e.g., activity, rumination): inconsistent outcomes
Limited robustness of sensors: they may perform differently depending on life stage,
physiological status, farm system, or environmental conditions

Lack of transparency, supporting information, and metadata: insufficient background
information on data generation procedures (e.g., variable definitions, units, resolution,
and frequency of records) and software/algorithm updates

Heterogeneous recording: data may be provided at different resolutions (e.g., hourly

vs. daily summaries; average versus sum)
21-1-2026 8
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|ICAR-IDF Sensor Initiative

Network. Guidelines. Certification.

ICAR IDF initiative on sensor data for functional traits:
Genetics and reference standards for ramination

ri8

eur'®, Manufacturer

rep.resentnt €S
ICAR Functional Traits Working Group, IDF Standing Committee of Animal Health and Welfare,
international experts, manufacturers

J. Dairy Sci. 108:10447-10474
https://doi.org/10.3168/jds.2025-26554

2025, The Authors. Published by Elsevier Inc. on behalf of the American Dairy Science Association®.
This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/).

Invited review: Using data from sensors and other precision farming
technologies to enhance the sustainability of dairy cattle breeding programsj

Luiz F. Brito," © Bjerg Heringstad,? © llka Christine Klaas,® © Katharina Schodl,* © Victor E. Cabrera,’
Anna Stygar,® ® Michael Iwersen,” © Marie J. Haskell,® © Kathrin F. Stock,? © Nicolas Gengler,'’ ¢

Jeffrey Bewley," © Miel Hostens,' © Elsa Vasseur," © and Christa Egger-Danner*
'Department of Animal Sciences, Purdue University, West Lafayette, IN 47907

“Norwegian University of Life Sciences, 1432 As, Norway

3DeLaval International AB, 14721 Tumba, Sweden

“ZuchtData EDV-Dienstleistungen GmbH, 1200 Vienna, Austria

University of Wisconsin-Madison, Madison, W| 53706

®Bioeconomy and Environment, Natural Resources Institute Finland (Luke), 00790 Helsinki, Finland

"Centre for Veterinary Systems Transformation and Sustainability, Clinical Department for Farm Animals and Food System Science,
University of Veterinary Medicine, 1210 Vienna, Austria

8SRUC (Scotland’s Rural College), Edinburgh EH9 3JG, United Kingdom

°IT Solutions for Animal Production (vit), 27283 Verden, Germany

OTERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liége, 5030 Gembloux, Belgium
"Holstein Association USA, Brattieboro, VT 05302

2College of Agriculture and Life Sciences, Cornell University, lthaca, NY 14853

*McGill University, Ste Anne de Bellevue, H9X 3V9, QC, Canada

21-1-2026 9
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Data Integration

v Most data remain farm-specific “silos” and are underutilized in genetic

evaluations

v" Collaborations between farmers, DHIA, breeding organizations, and

manufactures =» establishment of data exchange pipelines

v" Examples of data integration initiatives: PASDE (Purdue Univ.; Boerman et al., 2025),
DairyBrain (Cabrera et al., 2020), D4Dairy (Egger-Danner et al., 2022), Nordic Cattle
Database, Gigacow (Klingstrom et al., 2022), International Dairy Data Exchange Network
(IDDEN), and other companies (e.g., lyotah, Vyla, Dairy Data Warehouse, Join-Data, Dairy
Performance Network, AgriGates, Connecterra, etc.)
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i\wm#: Communications® Technical Note

Animal Nutrition and Farm Systems

7
s TBC; TBC

Data processing techniques to improve data
integration from dairy farms

Jacquelyn P. Boerman,'* @ Luiz F. Brito,'* © Maria E. Montes,' © Jacob M. Maskal,' © Jarrod Doucette,> ®
and Kirby Kalbaugh®
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Data Cleaning and Quality Assurance

v" Essential for accuracy, reliability, and comparability of phenotypes

v Schodl et al. (2024) proposed a 5-step framework:

* Validate the data merging process (e.g., non-unique device IDs, animal ID—device alighment,

time zones)
* Understand the data (e.g., type/units, raw vs. processed, comprehensive data visualization)
*  Check data completeness: define strategies to handle missing and duplicate records

* Address technology-related noise (e.g., calibration issues, software updates)

+  Detect outliers and verify plausibility (biological ranges, +3 SD) Sensor data cleaning for
applications in dairy herd

management and breeding

Katharina Schodl™, Anna Stygar?, Franz Steininger*
and Christa Egger-Danner® on behalf of the
D4Dairy-Consortium
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Deriving Novel Traits: Some Key Points

v' Criteria for inclusion in breeding programs: heritable and repeatable; capture biological
relevance or be genetically correlated with breeding goal traits; routinely measured,

standardized, and available at large-scale and low cost
v" Detailed documentation and metadata on the recording methods and variables of interest
v Proper data merging/integration, editing, and quality assurance

v" Extra care needed when merging “similar” variables from different sensors: check ranges,

mean, and variance; genetic correlation between variables, animal re-ranking, etc.
v" Statistical model development also requires data from potential systematic/fixed effects

v Genetic and genomic analyses of derived traits (as usual) 119096 .
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Great Opportunity for Breeding More Resilient Animals

v" Resilience: “individual capacity to be minimally affected by environmental disturbances
or to rapidly bounce back to the previously undisturbed states” (Colditz et al., 2016;
Berghof et al., 2019)

v In terms of animal welfare: more resilient animals will have a less negative experience
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Great Opportunity for Breeding More Resilient Animals

s SCIEN,
,qé:d»i:’-};_ J. Dairy Sci. 104:616-627
g iﬂ=.’!5 https://doi.org/10.3168/jds.2020-18525
% "’15 ® 2021, The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association®.

S

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Between-herd variation in resilience and relations to herd performance
and Luiz F. Brito™

M. Poppe,* @ H. A. Mulder, ® C. Kamphuis, ® and R. F. Veerkamp @
Wageningen University & Research, Animal Breeding and Genomics, PO Box 338, 6700 AH Wageningen, the Netherlands

among daughter groups and with yield responses to a heat wave

and disturbances at herd level ers
conditions

M. Poppe,* @ H. A. Mulder, © and R. F. Veerkamp
Wageningen University & Research, Animal Breeding and Genomics, PO Box 338, 6700 AH Wageningen, the Netherlands

Allan P. Schinckel" and Luiz F. Brito""

Opportunities to Improve Resilience
in Animal Breeding Programs

Genetic parameters for novel T
climatic resilience indicators derived
Validation of resilience indicators by estimating genetic correlations from automatically-recorded vaginal
temperature in lactating sows under heat stress

Hui Wen', Jay S. Johnson?, Leonardo S. Gloria', Andre C. Araujo', Jacob M. Maskal', Sharlene Olivette Hartman',
Felipe E. de Carvalho', Artur Oliveira Rocha', Yijlan Huang?, Francesco Tiezzi"®, Christian Maltecca®,

~

during environmental

Holstein cattle

Investigating the relationship between fluctuations in daily milk
yield as resilience indicators and health traits in Holstein cattle

Genomic-based genetic parameters for resilience across lactations in North
American Holstein cattle based on variability in daily milk yield records

Shi-Yi Chen,"?® Jacquelyn P. Boerman," © Leonardo S. Gloria,' © Victor B. Pedrosa,’ Jarrod Doucette,’

Exploring milk loss and variability

perturbations across lactation
stages as resilience indicators in

Ao Wang?, Luiz F. Brito?, Hailiang Zhang?, Rui Shi*, Lei Zhu?,
Dengke Liu®, Gang Guo* and Yachun Wang™*

Ao Wang,' ©® Guosheng Su,? Luiz F. Brito,® ® Hailiang Zhang,' ©® Rui Shi,' © Dengke Liu,* Gang Guo,’

Tom V. L. Berghof*, Marieke Poppe and Han A. Mulder an d Yachun Wang‘*

Wageningen University & Research Animal Breeding and Genomics, Wageningen, Netherlands

Genetic analysis of resilience indicators based on milk yield
records in different lactations and at different lactation stages

M. Poppe,' ® G. Bonekamp,' © M. L. van Pelt,2® and H. A. Mulder' ®
"Wageningen University & Research, Animal Breeding and Genomics, PO Box 338, 6700 AH Wageningen, the Netherlands
2Cooperation CRV, Animal Evaluation Unit, PO Box 454, 6800 AL Arnhem, the Netherlands
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Exploring Phenotypes for Disease
Resilience in Pigs Using Complete
Blood Count Data From a Natural
Disease Challenge Model

Xuechun Bai', Austin M. Putz2, Zhiquan Wang', Frédéric Fortin3, John C. S. Harding?,

Michael K. Dyck', Jack C. M. Dekkers?, Catherine J. Field', Graham S. Plastow’ and
PigGen Canadat
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Sensor-based Health Traits

Table 1. Heritability estimates for automatically recorded indicators of health in dairy cattle populations’

Trait Sensor Type N  Breed h?+SE Reference

EC AMS integrated sensor 1,714 Holstein 0.22 £0.04 Dechow et al. (2020)
Daily average EC AMS integrated sensor 8,455 Holstein 0.48 +0.10 Luet al. (2024)

EC at milking session 1 AMS integrated sensor 8,455 Holstein 0.46+0.10 Lu et al. (2024)

EC at milking session 2 AMS integrated sensor 8,455 Holstein 0.47+0.10 Lu et al. (2024)

EC at milking session 3 AMS integrated sensor 8,455 Holstein 0.47 +=0.10 Lu et al. (2024)

EC AMS integrated sensor 4,280 Holstein 0.46 = 0.02 Medeiros et al. (2024)
EC AMS integrated sensor 4,507 Holstein 0.38 t0 0.49 Pedrosa et al. (2023)
EC AMS integrated sensor 1,899 Holstein 0.38 =0.01 Piwezynski et al. (2021)
EC, front left AMS integrated sensor 922 Holstein 0.46 =0.09 Santos et al. (2018)
EC,front right AMS integrated sensor 922 Holstein 0.44 = 0.09 Santos et al. (2018)

EC, rear left AMS integrated sensor 922 Holstein 0.37 £0.08 Santos et al. (2018)

EC, rear right AMS integrated sensor 922 Holstein 0.38 = 0.09 Santos et al. (2018)
Overall EC AMS integrated sensor 922 Holstein 0.53 +0.09 Santos et al. (2018)

EC AMS integrated sensor 1,486 Holstein 0.36+0.04 Sitkowska et al. (2024)
EC, mean AMS integrated sensor 4,714 Norwegian Red 0.35+0.03 Wethal et al. (2020)

EC, maximum AMS integrated sensor 4,714 Norwegian Red 0.23 +0.02 Wethal et al. (2020)
Blood in milk AMS integrated sensor 1,714 Holstein 0.09 = 0.03 Dechow et al. (2020)
Smoothed milk BHB values (ket s1) Herd Navigator (BHB) 794 Nordic Red 0.09 £0.07 Higgman et al. (2019)
Smoothed milk BHB values (ket s2) Herd Navigator (BHB) 794 Nordic Red 0.07 £0.07 Haggman et al. (2019)
Milk temperature AMS integrated sensor 1,899 Holstein 0.41+0.01 Piwezynski et al. (2021)
SCS AMS integrated sensor 1,899 Holstein 0.36 +0.01 Piwczynski et al. (2021)
Mastitis susceptibility AMS integrated sensor 1,791 Holstein 0.07 £0.03 Welderufael et al. (2017)
Mastitis recovery AMS integrated sensor 1,791 Holstein 0.08 =0.03 Welderufael et al. (2017)
Log-transformed online cell count AMS integrated sensor 1,490 Norwegian Red 0.09 =0.03 Wethal et al. (2020)

' AMS = automated milking system: EC = electrical conductivity.
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All tables included in Brito et al. (2025):
https://doi.org/10.3168/jds.2025-26554
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Sensor-based Behavioral Traits

Table 2. Heritability (h?) estimates for cow behavioral traits derived from automated milking systems (milking robots)

Trait N Breed h?+SE Reference

Choice consistency score (5—50 DIM, primiparous) 730 Holstein 0.04 + 0.06 § Leovendahl et al. (2016b)

Choice consistency score (5—50 DIM, multiparous) 1,231 Holstein 0.05+0.04 §| Lovendahl et al. (2016b)

Choice consistency score (51-110 DIM, primiparous) 730 Holstein 0.11 = 0.08 || Lovendahl et al. (2016b)

Choice consistency score (51-110 DIM, multiparous) 1,231 Holstein 0.07 +£0.05 || Lovendahl et al. (2016b)

Choice consistency score (111-215 DIM, primiparous) 730 Holstein 0.14 = 0.08 § Lovendahl et al. (2016b)

Choice consistency score (111-215 DIM, multiparous) 1,231 Holstein 0.07 +£ 0.04 § Lovendahl et al. (2016b)

Choice consistency score (216-305 DIM, primiparous) 730 Holstein 0.08 = 0.07 § Leovendahl et al. (2016b)

Choice consistency score (216-305 DIM, multiparous) 1,231 Holstein 0.02 +0.03 § Lovendahl et al. (2016b)

Knock off (binary) 922 Holstein 0.03 +0.03 § Santos et al. (2018)
Log-transformed handling time 4,883 Norwegian Red 0.07 +£0.02 § Wethal and Heringstad (2019)
Number of kick-offs 4,883 Norwegian Red 0.06 +0.01 § Wethal and Heringstad (2019)
Number of kick-offs 1,714 Holstein 0.08 = 0.02 B Dechow et al. (2020)

Proportion of milkings with kick-offs 4,883 Norwegian Red 0.13 +0.03 § Wethal and Heringstad (2019)
Preference consistency score 4,249 Holstein 0.09 £ 0.01 § Berat et al. (2025)

Preference consistency score 2,258 Holstein 0.07 +£0.02 § Levendahl and Buitenhuis (2022)
Preference consistency score 2,407 Jersey 0.13+0.03 § Levendahl and Buitenhuis (2022)
Temperament 72,683 Norwegian Red 0.05+0.01 § Wethal et al. (2020)

Time profile (profile of the diurnal milking time) 2,258 Holstein 0.11 £ 0.02 § Levendahl and Buitenhuis (2022)

Time profile (profile of the diurnal milking time) 2,407 Jersey 0.04 + 0.02 § Levendahl and Buitenhuis (2022)

All tables included in Brito et al. (2025):
https://doi.org/10.3168/jds.2025-26554
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Sensor-based Activity Traits

Table 3. Heritability (h?) estimates for sensor-based activity traits measured in Holstein dairy cows

Trait Sensor type or brand N h?+ SE Reference
Activity time (min/24 h) SenseHub (Allflex Livestock Intelligence) collar 453 0.14 +0.06 Lemal et al. (2024)
::tfvjty Edai])l?l ) ﬁgomcwr ggg g;g + ggc_s’ :ascimcmo et a:. gggﬁ;

ctivity (weekly ometer 23 +0, ascimento et al.
Activity Electronic activity neck tags (SCR Heatime HR system) 1,171 0.09 +0.05 Schipke and Weigel (2014)
Duration of high activity episode Electronic activity tags (neckbands) 11,522 0.03 £0.01 Ismael et al. (2016)
Eating rate (kg/h) Automated feeders 842 0.46 £ 0.09 Linet al. (2013)
Eating time (first parity) SenseHub dairy sensors (Allflex) 142 0.42 £0.09 Atashi et al. (2024)
Eating time (second parity) SenseHub dairy sensors (Allflex) 243 045 +0.04 Atashi et al. (2024)
Eating time (first parity) SenseHub dairy sensor (Allflex) 142 042 +0.09 Atashi et al. (2024)
Eating time (second parity) SenseHub dairy sensor (Allflex) 243 045 +0.04 Atashi etal. (2024)
Eating time (min/24 h) SenseHub (Allflex) collar 453 0.12+0.05 Lemal et al. (2024)
Interval from calving to first high activity Electronic activity tags fitted on neckbands 11,522 0.11 £0.02 Ismael etal. (2016)
Lying time (daily) SMARTBOW ear-tag accelerometer 728 037 +£0.07 Nascimento et al. (2024)
Lying time (weekly) SMARTBOW ear-tag accelerometer 728 0.48 £ 0.09 Nascimento et al. (2024)
Strength of high activity episode Electronic activity tags (neckbands) 11,522 0.03 Ismael et al. (2016)
Daily sum activity (DIM 7 and 14) Lely 1,084 0.13£0.09 Schodl et al. (2024)
Daily SD activity (DIM 7 and 14) Lely 1,084 033£0.14 Schodl et al. (2024)
Mean daily activity sum over 5-7 and 12-14 DIM Lely 1,084 024 £0.07 Schodl et al. (2024)
Mean daily activity SD over 5-7 and 12-14 DIM Lely 1,084 0.35 +£0.09 Schodl et al. (2024)
Regression slope of activity daily sum over 5-7 and 12-14 Lely 1,084 0.12+0.03 Schodl et al. (2024)

DIM
Regression slope of daily SD over 5-7 and 12-14 DIM Lely 1,084 0.18 4 0.04 Schodl et al. (2024)
Mean daily activity sum over 150 DIM Lely 1,084 0.15 £0.06 Schodl et al. (2024)
Mean daily activity SD over 150 DIM Lely 1,084 0.19 +0.07 Schodl et al. (2024)
Regression slope of daily activity sum over 150 DIM Lely 1,084 022+0.13 Schodl et al. (2024)
Regression slope of daily activity SD over 150 DIM Lely 1.084 0.11 £0.14 Schodl et al. (2024)
Mean daily activity sum over 305 DIM Lely 1,084 0.18 £0.05 Schodl et al. (2024)
Mean daily activity SD over 305 DIM Lely 1,084 0.18 + 0.06 Schodl et al. (2024)
Regression slope of daily activity sum over 305 DIM Lely 1,084 0.18£0.13 Schodl et al. (2024)
Regression slope of daily activity SD over 305 DIM Lely 1,084 026 £0.17 Schodl et al. (2024)
Daily activity sum on 7 and 14 DIM Smaxtec 409 0.18£0.11 Schodl et al. (2024)
Daily activity SD on 7 and 14 DIM Smaxtec 409 0.55+0.21 Schodl et al. (2024)
Mean daily activity sum over 5-7 DIM and 12-14 DIM Smaxtec 409 034 +£0.11 Schodl et al. (2024)
Mean daily activity SD over 5-7 DIM and 12-14 DIM Smaxtec 409 047 £0.11 Schodl et al. (2024)
Regression slope of daily activity sum over 5-7 DIM and Smaxtec 409 0.00 £ 0.00 Schodl et al. (2024)

12-14 DIM
Regression slope of daily activity SD over 5-7 DIM and Smaxtec 409 0.07 £0.03 Schodl et al. (2024)

12-14 DIM
Mean daily activity sum over 150 DIM Smaxtec 409 0.00 £ 0.00 Schodl et al. (2024)
Mean daily activity SD over 150 DIM Smaxtee 409 0.00 £ 0.00 Schodl et al. (2024)
Regression slope of daily activity sum over 150 DIM Smaxtec 409 0.00 £ 0.00 Schodl et al. (2024)
Regression slope of daily activity SD over 150 DIM Smaxtec 409 0.00 £ 0.00 Schodl et al. (2024)
Mean daily activity sum over 305 DIM Smaxtec 409 0.00 £ 0.00 Schodl et al. (2024)
Mean daily activity SD over 305 DIM Smaxtec 409 0.00 + 0.00 Schodl et al. (2024)
Regression slope of daily activity sum over 305 DIM Smaxtec 409 0.00 £ 0.00 Schodl et al. (2024)
Regression slope of daily activity SD over 305 DIM Smaxtec 409 0.00 £ 0.00 Schodl et al. (2024)
Activity: mean, SD, and median on the day of milk recording  Lely |1.289 0.09-0.16 (£0.01-0.04 8 Schodl et al. (2023)

(test day)
Activity: deviation between mean and SD at test day and 5 Lely 1,289 0.12-0.19 (£0.01-0.05 8 Schodl et al. (2023)

and 10 d before
Activity: mean, SD, mean SD and median over 3-305 DIM Lely 1,289 0.17-0.20 (£0.03) Schodl et al. (2023)

L\a“‘“wm"o”"%
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Rumination Traits

Table 4. Heritability estimates for sensor-based rumination time traits in dairy cattle populations

Trait Sensor type or brand N h?+SE Reference
Rumination time (first parity) SenseHub dairy sensor (Allflex) 142 0.45 +0.06 Atashi et al. (2024)
Rumination time (second parity) SenseHub dairy sensors (Allflex) 243 043 £0.02 Atashi et al. (2024)
Rumination time (First | ion) SenseHub dairy sensors (Allflex) 142 045 £0.06 Atashi et al. (2024)
Rumination time (second parity) SenseHub dairy sensor (Allflex) 243 0.43 £0.02 Atashi et al. (2024)
Rumination time (Early) - research herds Microphone-based rumination monitoring sensor 159 0.14 £0.27 Byskov et al. (2017)
Rumination time (Late) - research herds Microphone-based rumination itoring sensor 159 0.23 +£0.26 Byskov et al. (2017)
Rumination time (Peak) h herds Microphone-based rumination monitoring sensor 159 044 +0.34 Byskov et al. (2017)
Rumination time (Total) h herds Microphone-based rumination monitoring sensor 159 0.33£0.16 Byskov et al. (2017)
Rumination time (Early) - commercial herds Microphone-based ruminati itoring sensor 10,475 0.29 £0.03 Byskov et al. (2017)
Rumination time (Peak) - commercial herds Microphone-based rumination monitoring sensor 10,475 0.28 £0.03 Byskov et al. (2017)
Rumination time (Mid) - commercial herds Microphone-based rumination monitoring sensor 10,475 0.32:£0.04 Byskov et al. (2017)
Rumination time (late) - commercial herds Microphone-based rumination monitoring sensor 10,475 0.31 +£0.04 Byskov et al. (2017)
Rumination time (total) - commercial herds Microphone-based rumination monitoring sensor 10,475 0.30 +£0.03 Byskov et al. (2017)
Rumination time Accelerometer-based neck tag (Lely Qwes HR-LDn) 1,486 0.14 £ 0.04 Sitkowska et al. (2024)
Rumination time SenseHub collar (Allflex) 453 0.19 £0.05 Lemal et al. (2024)
Rumination time Electronic collar with acoustic sensors (Allflex SCR, Hi Tag) 656 045£0.14 Lopes et al. (2024)
Rumination time Collar with tag (Lely Qwes) 775 0.17 £ 0.06 Lopez-Paredes et al. (2020)
Rumination time (Early) Neck collar with a tag (microphone + three-axis accelerometer) 710 0.32 Moretti et al. (2018)
Rumination time (Mid) Neck collar with a tag (microphone + three-axis accelerometer) 710 0.34 Moretti et al. (2018)
Rumination time (Late) Neck collar with a tag (microphone + three-axis accelerometer) 710 035 Moretti et al. (2018)
Rumination Time (weekly) SMARTBOW ear-tag accelerometer 728 0.25+0.08 Nascimento et al. (2024)
Rumination time (daily) SMARTBOW ear-tag accelerometer 728 0.19 +0.06 Nascimento et al. (2024)
Mean, SD and median on the day of milk recording  Lely 1,289 B 0.03-0.30 = 0.01-0.04 Schodl et al. (2023)
(test day)
Deviation between mean and SD at test day and 5 Lely 1,289 | 0.10-0.37 £ 0.01-0.05 Schodl et al. (2023)
and 10 d before
Mean, SD, mean SD and median over 3-305 DIM Lely 1.289 0.39-0.50 + 0.06 Schodl et al. (2023)
Mean and SD on day of milk recording (test day) Lely 834 0.06-0.18 + 0.03-0.04 Schodl et al. (2022)
Deviation between mean and SD at test day and 5 Lely 834 <0.01-0.04 £ 0.01-0.02 Schodl et al. (2022)
d before
Regression slope of daily mean and SD over 5days  Lely 834 <0.01-0.04 £ 0.01-0.02 Schodl et al. (2022)
before to test day
Rumination time SCR recording system (accelerometer) 77,697 0.32+£0.01 to 0.45 £ 0.02 Weller and Ezra (2024)
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Sensor-based Fertility Traits

Table 5. Heritability (h®) estimates for indicators of fertility derived based on automatically recorded data in dairy cattle populations

Trait Sensor Type N  Breed h’+ SE Reference
Calving to first heat Herd Navigator (P4) 676 Nordic Red 0.19+0.11 dggman et al. (2019)
Calving to first heat Herd Navigator in-line milk progesterone system 2,645 Swedish Red and Holstein 0.18 £0.05 [arekegn et al. (2019)
Commencement of luteal activity Herd Navigator (P4) 766 Nordic Red 0.24 £0.12 Piggman et al. (2019)
Commencement of luteal activity Herd Navigator in-line milk progesterone system 2,645 Swedish Red and Holstein 0.24 £ 0.04 Harekegn et al. (2019)
Days from calving to first high- Electronic activity tag 517 Holstein, Red Dane, Jersey 0.18 +0.07 Flevendahl and Chagunda (2009)
activity episode
Duration of estrus episode Electronic activity tag 517 Holstein, Red Dane, Jersey 0.05 +£0.02 BLevendahl and Chagunda (2009)
Estrus period activity variation SCR Heatime HR system (accelerometer neck tag) 1,070 Holstein 0.11 £0.06 Bchipke and Weigel (2014)
Estrus period average activity SCR Heatime HR system (accelerometer neck tag) 1,070 Holstein 0.12 £ 0.05 Bchdpke and Weigel (2014)
First luteal phase length Herd Navigator in-line milk progesterone system 2,645 Swedish Red and Holstein 0.08 +0.04 [arckegn et al. (2019)
Interval from calving to first high Automatic milking system (Lely) 8,139 Norwegian Red 0.05 £ 0.01 Meringstad and Wethal (2023)
activity
Interval from commencement of Herd Navigator in-line milk progesterone system 2,645 Swedish Red and Holstein 0.03 +£0.04 [rarekegn et al. (2019)
luteal activity to first service
Interval from commencement of Herd Navigator in-line milk progesterone system 1,561 Holstein 0.11 £0.06 Wenghe et al. (2015)
luteal activity to first service
Length of first interovulatory Herd Navigator in-line milk progesterone system 2,645 Swedish Red and Holstein 0.03 £ 0.04 Farckegn et al. (2019)
interval
Luteal activity between 25 and 60 Herd Navigator in-line milk progesterone system 1,561 Holstein 0.06 +0.04 Wenghe et al. (2015)
DIM
Luteal activity during first 60 DIM Herd Navigator in-line milk progesterone system 2,645 Swedish Red and Holstein 0.15£0.04 Prarckegn et al. (2019)
MIR-predicted fertility MIR spectroscopy 4,124 Holstein 0.16 £ 0.03 [an den Berg et al. (2021)
Natural log of commencement of Herd Navigator in-line milk progesterone system 1,561 Holstein 0.12 +£0.05 Wenghe et al. (2015)
luteal activity
Postestrus activity variation SCR Heatime HR system (accelerometer neck tag) 1,070 Holstein 0.14 £0.05 Bchoépke and Weigel (2014)
Postestrus average activity SCR Heatime HR system (accelerometer neck tag) 1,070 Holstein 0.03 £0.03 [Bchipke and Weigel (2014)
Pre-estrus activity variation SCR Heatime HR system (accelerometer neck tag) 1,070 Holstein 0.15+£0.05 Bchiopke and Weigel (2014)
Pre-estrus average activity SCR Heatime HR system (accelerometer neck tag) 1,070 Holstein 0.05 +0.04 Bchopke and Weigel (2014)
Proportion of samples in luteal Herd Navigator in-line milk progesterone system 1,561 Holstein 0.12 +£0.05 Nenghe et al. (2015)
activity between 25 and 60 DIM
Proportion of samples with luteal Herd Navigator in-line milk progesterone system 2,645 Swedish Red and Holstein 0.13 £0.03 [arekegn et al. (2019)
activity
Regularity of estrus episodes Electronic activity tag 483 Holstein, Red Dane, Jersey 0.00 £0.02 PLevendahl and Chagunda (2009)
Strength of estrus Electronic activity tag 517 Holstein, Red Dane, Jersey 0.06 + 0.02 HLevendahl and Chagunda (2009)
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Feed Intake, Feeding Behavior, and Feed Efficiency

Table 6. Estimates of heritability (") for traits related to feed intake, feeding behavior, and feed efficiency in dairy cattle populations’

Trait Sensor type or brand N Breed Life stage b+ SE Reference
DMI Feed bins from Biocontrol (weights 557 Norwegian Red  Lactating cows 0.29 Bakke and Heringstad
for roughage intake) (2024)
DMI Electronic feeder (Gallagher) 1,598 t0 1,958  Holstein Lactating cows 0.19£ 00410036+ 004  Bolormaa et al. (2023)
DMI Fecf birl||s. feed gates controlled by Holstein Lactating cows 032+£007t0049+ 008  Byskov et al. (2017)
neck collars
DMI Automated feed intake system 3,075 Holstein Lactating cows (P1) 0.32+003 Hardie et al. (2017)
(recorded in AMS)
DMI Automated feed intake system 2,667 Holstein Lactating cows 0.23+0.03 Hardie et al. (2017)
(recorded in AMS) (multiparous)
DMI Electronic feeder 842 Holstein Dairy heifers (~6 mo) 0.50+ 0.09 Lin et al. (2013)
DMI Cattle Feed Intake System (3D 2,688 Holstein Lactating cow 0.25+0.02 Manzanilla-Pech et al.
cameras) (2023)
DMI Cattle Feed Intake System (3D 1378 Jersey Lactating cow 0.17+0.03 Manzanilla-Pech et al.
cameras) (2023)
DMI Cattle Feed Intake System (3D 1951 Nordic Red Lactating cow 0.18+0.02 Manzanilla-Pech et al.
cameras) (2023)
DMI Electronic feed recording system 379 Australian Lactating cows 0.33£0.13 Richardson et al. (2021)
dairy cows
DMI Electronic feeding system (RIC 7379 Holstein Lactating cows 0.20-0.37 Stephansen etal. (2023)
system, Insentec)
RFI Feed bins, feed gates controlled by Holstein Lactating cows 0.23 £0.07t00.36+ 0.08  Byskovetal. (2017)
neck collars
RFI Derived from automated feed intake, 2,667 and 3,075 Holstein Lactating cows 0.13£0.03and 0.14 £ 003 Hardie et al. (2017)
milk yield, and body weight records
RF1 Electronic feeder (Gallagher) 842 Holstein Heifers (~6 mo) 0.48 £0.09 Lin et al. (2013)
Genetic RF1 Derived from DMI, ECM, and BW 7379 Holstein Lactating cows 0.22-0.34 Stephansen etal. (2023Y
data
Residual energy intake Derived from AMS records, 1274 Holstein Lactating cows 0.08 £0.03 Hurley et al. (2017)
electronic scale, and n-alkane-based 2.
DMI estimates Table 6 (Continued). Estimates of heritability (h’) for traits related to feed intake, feeding behavior, and feed efficiency in dairy cattle populations'
Residual energy Derived from AMS records, 1274 Holstein Lactating cows 0.24 £0.05 Hurley et al. (2017) =
production electronic scale, and n-alkane-based Trait Sensor type or brand N Breed Life stage h’+ SE Reference
DMI estimates
Net energy intake Derived from AMS records, 1274 Holstein Lactating cows 0.17 £0.05 Hurley et al. (2017) Intake per meal Automated intake recording system 1328 Holstein Mid-lactation 0.13£0.02 Cavani et al. (2022)
c!cclronif‘, scale, and n-alkane-based (RIC)
DL estluates . - Intake per visit Automated intake recording system 1,328 Holstein Mid-lactation 0.16+0.03 Cavani et al. (2022)
Energy balance Den\'ed_frnm AMS records, 1274 Holstein Lactating cow 0.12£0.04 Hurley et al. (2017) (RIC)
dlecimale scr's; and - alkans-bysed Number of feeder visits  Automated intake recording system 1,328 Holstein Mid-lactation 0.16+ 003 Cavani et al. (2022)
Z 3 2. = F o . 1 7 per day (RIC; Hokofarm Group)
E:,ui';illmn of eachifeoder!  momaind sk ceooning apsimt Loz Holstel Mid-lscumon 4165003 Saveniersl C022), Number of meals per Automated intake recording system 1,328 Holstein Mid-lactation 0.09:+ 002 Cavani et al. (2022)
Duration of each meal Automated intake recording system 1,328 Holstein Mid-lactation 0.14 £0.02 Cavani et al. (2022) day (RIC) . . i
Energy conversion Derived from AMS records, 1,274 Holstein Lactating cows 0.17 £0.05 Hurley etal, (2017)  Number of meals Electronic feeder (Gallagher) 842 Holstein Heifers (~6 mo) 0.40 £ 0.09 Lin et al. (2013)
efficiency electronic scale, and n-alkane-based Per-visit milk AMF 4,572 Holstein Calves 0.025+0.01 Graham et al. (2024)
DMI estimates consumption
Feeding duration Electronic feeder (Gallagher) 842 Holstein Heifers (~6 mo) 0.45 £0.08 Lin et al. (2013) Average meal size Electronic feeder (Gallagher) 842 Holstein Heifers (~6 mo) 0.46 + 0.09 Lin et al. (2013)
Feeding interval AMF ) 4,572 Holstein Calves 0.008 +0.01 Graham et al. (2024)  Daily milk consumption ~ AMF 10,076 Holstein Calves 0.074 0.01 Graham et al. (2024)
Feeding rate per meal Automated intake recording system 1,328 Holstein Mid-lactation 023 £0.03 Cavani et al. (2022 Daily number of AMF 10,076 Holstein Calves 0.03 £ 0.01 Graham et al. (2024)
g T 010 3 ] 3 h 2 : rewarded visits
Feeding rate per visit a:[lCDTnlcd intake recording system 1,328 Holstein Mid-lactation 0.11 002 Cavani et al. (2022) Daily sum of drinking AMF 10076 Holstein Calves 0.07 £ 0,01 Graham et al. (2024)
duration
Drinking duration per AMF 4572 Holstein Calves 0.02 £ 0.01 Graham et al. (2024)
visit
Drinking speed AMF 10,076 Holstein Calves 0.08 +0.01 Graham et al. (2024)
Total i AMF 4,572 Holstein Calves 0.21 £0.02 Graham et al. (2024)
. . . variance
AI | ta b | es inc I u d ed in B rItO et al ( 20 2 5 ) . Total drinking duration ~ AMF 4572 Holstein Calves 0.23 £0,02 Graham et al. (2024)
. . variance
Total duration of feeder  Automated intake recording system 1,328 Holstein Mid-lactation 0.16 £0.03 Cavani et al. (2022)
. . . visits per day (RIC)
h tt PS. d 0l1.0rg 1 O . 3 1 6 8 | d S. 2 0 2 5 - 2 6 5 5 4 Total number of visits  AMF 10076 Holstein Calves 0.05 +0.01 Graham et al. (2024)
13D = 3-di l; AMS = d milking system; AMF = automated milk feeding machine; N = number of cattle; P1 = first parity; RFI = residual feed intake.
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2023, The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association®.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Genetic parameters for feed intake and body weight in dairy cattle using
high-throughput 3-dimensional cameras in Danish commercial farms
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New Calf Traits
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Genetic parameters for calf feeding traits derived from automated
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disease treatments in North American Holstein calves
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Trait development and genetic parameters of resilience indicators
based on variability in milk consumption recorded by automated
milk feeders in North American Holstein calves
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Greenhouse Gas Emissions

Table 7. Heritability estimates for traits related to enteric h gas by dairy cattle p
Trait Technology type or brand N Breed W+ SE Reference
CH, concentration Nondispersive infrared methane detector installed 1,501 Holstein 0.11£003 Lopez-Paredes et al. (2020)
in the AMS feed bin
CH; concentration, first lactation Nondispersive infrared CH, sensor 489 Holstein 0.10 - 0.28 (£0.05-0.06) Manzanilla-Pech etal. (2022)
CH, concentration, second Nondispersive infrared CH, sensor 368 Holstein 0.13 - 029 (0.05-0.06) Manzanilla-Pech etal. (2022)
lactation
CH, concentration Guardian NG infrared gas monitor installed in the 416 Holstein 0.12£ 001 Saborio-Montero et al. (2020)
feed bin of the AMS
CH; concentration (log1 (CH4)) Nondispersive infrared sensor in AMS 1,508 Holstein 0.11+0.02 van Engelen et al. (2018)
CH, concentration (ppm, weekly)  Sniffer 1,800 Holstein 032 £0.02 van Breukelen et al. (2023)
CH; concentration (weekly) Sniffer 4,664 Holstein 0.17 £ 0.04 van Breukelen et al. (2024)
CH;, concentration (ppm, daily) Sniffer 1,800 Holstein 0.18+0.01 van Breukelen et al. (2023)
CO, concentration Nondispersive infrared sensor (Sense Air LPL 1,508 Holstein 0.12 £ 0.02 van Engelen et al. (2018)
CHy/CO,, Rise Acreo) in AMS
CO, concentration (ppm, daily) Sniffer 1.800 Holstein 020 0.01 van Breukelen et al. (2023)
CO, concentration (ppm, weekly)  Sniffer 1,800 Holstein 032+0.02 van Breukelen et al. (2023)
CH, conversion factor Sniffer method integrated in AMS 182 Holstein 0.13£0.13 Uemoto et al. (2024)
CH; intensity GreenFeed 265 Holstein 021=0.14 Kamalanathan et al. (2023)
CH; intensity Noninvasive FTIR analyzer 1,745 Holstein 021+ 0.06 Lassen and Lovendahl (2016)
CHy intensity SF6 tracer and daily milk records (MIR) 379 Australian dairy 033+0.12 Richardson et al. (2021)
cows
CH;, production (g/d) GreenFeed 1,370 Norwegian Red 039= Bakke and Heringstad (2024)
CH, production Infrared CH, analyzer in milking robot 184 Holstein 0.12-0.45 Breider et al. (2019)
CH; production (g/d) GreenFeed 212 Norwegian Red 0.56 £ 0.20 Heringstad and Bakke (2023)
CH; production GreenFeed 330 Holstein 0.16 = 0.10 Kamalanathan et al. (2023)
CH;, production Milking robot (Fourier transform infrared sensor) 339 Holstein 024+0.15 Lassen et al. (2016)
CH, production GreenFeed 451 Holstein 036 0.12 Lopes et al. (2024)
CH; production Nondispersive infrared method 1,501 Holstein 0.12£ 0.04 Lépez-Paredes et al. (2020)
CH; production, first lactation Derived from sensor data (Guardian NG; 425 Holstein 0.11-0.49 (+0.07-0.13)  Manzanilla-Pech et al. (2022) -
calculated using ECM and BW) =
CH; production, second lactation Derived from sensor data (Guardian NG; 318 Holstein 0.14 - 0.36 (£0.07- 0.13) Manzanilla-Pech et al. (2022)
calculated using ECM and BW) ©
CH, production SF6 tracer method 379 Australian dairy 0.16 £ 0.11 Richardson et al. (2021) .
cows T
CH; production GreenFeed 822 Holstein 0.19+0.02100.33 £0.04 van Breukelen et al. (2023) S -
CO, production (g/d) GreenFeed 822 Holstein 0.24 %003 van Breukelen et al. (2023) E’ <
CH, production FTIR gas analyzer (“sniffer” in AMS) 1,397 Holstein 025+ 0.07 Zetouni et al. (2018)
CH;, production and intensity Milk mid-infrared spectroscopy (MIR) 231,400 to 336,126 Holstein 0.17 £ 0.01 100.25 £0.01 Kandel et al. (2017) é o
predicted from MIR s
CHyj production predicted from Milk mid-infrared spectroscopy (MIR) 541,565 Holstein 023+ 0.01 Rojas de Oliveira et al. (2024) 2
MIR a
CH, yield GreenFeed system 287 Holstein 0270.12 Kamalanathan et al. (2023) ©
CH, yield SF6 tracer and electronic feed recording system 379 Australian dairy 023+0.12 Richardson et al. (2021)
cows o |
CH4_MILK Milking robot (Fourier transform infrared sensor) 339 Holstein 026x0.14 Lassen et al. (2016) N 1000 2000 3000 4000 5000
CH4_RATIO Milking robot (Fourier transform infrared sensor) 339 Holstein 0.09+0.11 Lassen et al. (2016) Wavelength
CH,/CO, ratio Sniffer method integrated in AMS 182 Holstein 0.12+0.14 Uemoto et al. (2024)
CH4:CO, ratio Nondispersive infrared sensor (SenseAir LPL 1,508 Holstein 0.03 £ 001 Van Engelen et al. (2018)
CHY/CO,, Rise Acreo) in AMS
CH,/CO,; ratio per visit Sniffer in AMS feed bin 1,746 Holstein 0.01 +£0.01 van Breukelen et al. (2022)
CH,/CO, ratio per week Sniffer in AMS feed bin 1,579 Holstein 0.02+0.01 van Breukelen et al. (2022)
Daily CH, production Noninvasive FTIR analyzer 1,745 Holstein 021 £ 0.06 Lassen and Lovendahl (2016)
wernat;
S, . . .
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Body Weight and Udder Conformation

Table 8. Heritability (h?) estimates for BW and udder conformation traits derived from automatically recorded data

Trait Sensor type or brand N Breed h’ £ SE Reference

BW Electronic scale (in AMS) 184 Holstein 0.40-0.67 { Breider et al. (2019)
Metabolic BW Electronic scale (in AMS) 3,075 Holstein 0.51 £0.03 Hardie et al. (2017)
Metabolic BW Electronic scale (in AMS) 2,667 Holstein 0.46 +0.03 Hardie et al. (2017)

BW Cattle Feed Intake System (3D Cameras) 2,688 Holstein 0.51 £0.04 Manzanilla-Pech et al. (2023)
BW Cattle Feed Intake System (3D Cameras) 1,378  Jersey 045 £0.04 Manzanilla-Pech et al. (2023)
BW Cattle Feed Intake System (3D Cameras) 1,951 Nordic Red 0.58 £ 0.04 Manzanilla-Pech et al. (2023)
BW Automated weighing system 7,379  Holstein 0.39-0.52 @ Stephansen et al. (2023)
Change in BW Derived from automated weighing system data 7,379  Holstein <0.02 Stephansen et al. (2023)
Weekly average BW — Lactation 1 Electronic scale (in AMS) 3,253  Holstein 0.31-0.53 | Tribout et al. (2023)

Weekly average BW — Lactation 2 Electronic scale (in AMS) 2,553  Holstein Tribout et al. (2023)

BW loss from wk 1 to wk 5 — Lactation 1 Derived from sensor-recorded body weight 3,253  Holstein Tribout et al. (2023)

BW loss from wk 1 to wk 5 — Lactation 2 Derived from sensor-recorded body weight 2,553  Holstein Tribout et al. (2023)

Udder balance AMS 4,280 Holstein Medeiros et al. (2024)
Distance front-rear AMS 4,280 Holstein Medeiros et al. (2024)

Front teat distance AMS 4,279  Holstein Medeiros et al. (2024)

Rear teat distance AMS 4,278 Holstein Medeiros et al. (2024)

Udder depth AMS 4,280 Holstein Medeiros et al. (2024)

Rear teat distance AMS 12,663  Holstein Poppe et al. (2019)

Front teat distance AMS 12,663  Holstein Poppe et al. (2019)

Udder depth AMS 12,663  Holstein Poppe et al. (2019)

Distance front-rear AMS 12,663  Holstein Poppe et al. (2019)

Udder balance AMS 12,663  Holstein Poppe et al. (2019)

AMS: automated milking system.
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AMS-based Udder Conformation

SCIEy, .

\ TE ps://doi.org/10.3168/jds.2023-24208
-9,,,1\‘,!,’/05 © 2024, The Authors. Published by Elsevier Inc. on behalf of the American Dairy Science Association®.
: This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Genetic parameters for udder conformation traits derived
from Cartesian coordinates generated by robotic milking
systems in North American Holstein cattle

Gabriel C. Medeiros,"? © Jose Bento S. Ferraz,' Victor B. Pedrosa,?® Shi-Yi Chen,>*© Jarrod S. Doucette,*

Jacquelyn P. Boerman,?© and Luiz F. Brito?

"Department of Veterinary Medicine, College of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga, SP, 13635-900,
Brazil

2Dep.’-:rtment of Animal Sciences, Purdue University, West Lafayette, IN 47907

Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu,
Sichuan, 611130, China

“Agriculture Information Technology (AgIT), Purdue University, West Lafayette, IN 47907

. Udder DINENE Front teat Rear teat
Udder depth - 0.11 (0.04) -0.47 (0.03) -0.31(0.03) -0.27 (0.04)
Udder balance 0.09 (0.02) - 0.12 (0.04) -0.20(0.04) -0.11 (0.05)

Distance front-rear -0.40 (0.02) 0.11 (0.02) 0.32(0.03) 0.10(0.04)
Front teat distance -0.28 (0.02) -0.15(0.02) 0.33(0.02) - 0.54 (0.03)

s el eS8 . P S -0.22 (0.02) -0.19 (0.02) 0.15(0.02) 0.61 (0.01) -
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Table 9. Heritability (h!) estimates for milking efficiency and milk-related traits derived from automated milking systems (AMS: milking robots) in

dairy cattle populations

Milking Efficiency and Milk-related Traits

Trait N Breed Reference
Attachment time 1.899 Holstein Piwczyiski et al. (2021)
Average flow rate 1.645 Swedish Holstein Carlstrém et al. (2013)
Average flow rate 1,512 Swedish Holstein Carlstrém et al. (2013)
Average flow rate 1.447 Swedish Red Carlstrém et al. (2013)
Average flow rate 1544 Swedish Red Carlstrm et al. (2013)
Milk flow rate 1.714 Holstein Dechow et al. (2020)
Milk harvest rate 1.714 Holstein Dechow et al. (2020)
Average mulk flow rate 401 Holstein Gade et al. (2006)
Maximum milk flow rate 401 Holstein Gade et al. (2006)
Average milk flow rate 4,507 Holstein Pedrosa et al. (2023)
Maximum milk flow rate 4,507 Holstein Pedrosa <t al. (202.
Flow rate 4.883 Norwegian Red 0.48=0.04 Wethal and Heringstad (2019)
Box time 1.645 Swedish Holstein Carlstrm et al. (2013)
Box time 1512 Swedish Holstein Carlstrm et al. (2013)
Box time 1.447 Swedish Red Carlstrém et al. (2013)
Box time 1.544 Swedish Red Carlstrm et al. (2013)
Box time 1,053 Swedish Holstein Carlstrém et al. (2014)
Box time 1,749 Swedish Red Carlstrm et al. (2014)
Box time 2,258 Holstein Lovendahl and Buitenhuis (2022)
Box time 2,407 Jersey Lovendahl and Buitenhuis (2022)
Box time 1.486 Holstein Sitkowska et al. (2024)
Box time 4,883 Norwegian Red ‘Wethal and Heringstad (2019)
Connection time 27.726 Danish Holstein (including Danish Stephansen et al. (2018)
Red Holstein)

Handling time 4,883 Norwegian Red Wethal and Heringstad (2019)
Incomplete milkings 1,714 Holstein Dechow wt al, (2020)
Incomplete milkings 4,883 Norwegian Red Wethal and Heningstad (2019)
Leakage 66,743 Norwegian Red Wethal et al. (2020)
Milk yield 1,713 Holstein Aecrts etal. (2021)
305-d mature-equivalent milk 1.714 Holstein Dechow et al. (2020)

yield
Milk yield (5 to 70 d postpartum) 670 Nordic Red Higgman ¢t al. (2019)
Milk yield 401 Holstein Gade et al. (2006)
Daily milk yield 953 Holstein Nixon et al. (2009)
Daily milk yield 4,507 Holstein Pedrosa et al, (2023)
Daily milking frequency 053 Holstein 0.02-0.08 Nixeon et al. (2000)
Milking efficiency 4,506 Holstein 045 10 0.56 Pedrosa et al, (2023)
Milking frequency 1,713 Holstein 0230.04 Aerts etal. (2021)
Milking failures 4.511 Holstein 0.02=0.01 Pedrosa et al. (2023)
Milking efficiency 1,486 Holstein 0.35=0.01 Sitkowska et al. (2024)
Milking efficiency 4,883 Norwegian Red ‘Wethal and Heringstad (2019)
Milking frequency 2,258 Holstein Lovendahl and Buitenhuis (2022)
Milking frequency 2407 Jersey Lovendahl and Buitenhuis (2022)
Milking frequency 1,899 Holstein Piwezyiski et al. (2021)
Milking frequency 43883 Norwegian Red Wethal and Heringstad (2019)
Milking frequency (DIM 0-99d)  1.216 not informed (Dairy Cattle) Kénig et al. (2006)
Milking frequency (DIM 1112 not informed (Dairy Cattle) Kénig et al. (2006)

100-199 d)
Milking frequency (DIM 1,004 not informed (Dairy Cattle) Kéonig et al. (2006)

200-299 d)
Test-day milking frequency 543 Holstein Nixon et al. (2009)
Milking interval 1.645 Swedish Holstein Carlstrom et al. (2013)
Milking interval 1512 Swedish Holstein Carlstrom et al. (2013)
Milking interval 1447 Swedish Red Carlstrém et al. (2013)
Milking interval 1544 Swedish Red Carlstrém et al. (2013)
Milking interval 4883 Norwegian Red Wethal and Heringstad (2019)
Milking refusals 4511 Holstein Pedrosa et al. (2023)
Milking speed 1713 Holstein . Aerts et al. (2021)
Milking speed 1,899 Holstein 0.43=0.01 Piwezynski et al. (2021)
Milking speed 1.486 Holstein 0.36 % 0.05 Sitkowska et al. (2024)
Milking speed 72,487 Norwegian Red 022+0.01 ‘Wethal et al. (2020)
Milking time 1.714 Holstein Dechow et al. (2020)
Milking time 401 Holstein Gade et al. (2006)
Milking time 4,507 Holstein Pedrosa et al. (2023)

1.899 Holstein Piwezyfiski et al. (2021)

Milking time

THE ONLY INDEX

FROM ON-FARM ROBOTIC

DATA DEVELOPED FOR

ROBOTIC USERS
Robotic Cow Index

An example =

Teat Length
13

Robotic
Cow Index
(RCI) A

All tables included in Brito et al. (2025):
https://doi.org/10.3168/jds.2025-26554
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Data Access, Ownership, Storage, and Infrastructure

v National genetic evaluations: robust and scalable infrastructure capable of handling

large and multidimensional datasets (Wangen et al., 2021)

v Definition of the variables and data that should be stored for long-term usage to

ensure consistency, relevance, and efficiency in genetic evaluations

v" Challenges: data integrity, security, and accessibility while maintaining computational

efficiency for real-time or near-real-time analyses

v High-throughput storage solutions: distributed databases and cloud-based platforms
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Data Access, Ownership, Storage, and Infrastructure

v’ Standardized data formats are necessary: ICAR plays a major role on this regard

v Regulatory considerations: data access and portability rights, data access

modalities, data storage (format, resolution), robust data security, and ethical

considerations

v" Various regulatory frameworks: General Data Protection Regulation, Data Act, Data

Governance Act

v Transparent policies as well as clear and fair data sharing agreements are needed

to ensure optimal use and equitable value distribution among all stakeholders
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Roadmap for Implementation: Points to Consider

v Dairy farmers may seek to monetize their data: agreements with research organizations,
national genetic evaluation centers, or even selling their data to private dairy breeding

companies
Develop centralized and producer-owned databases
Automate data cleaning, processing, and integration pipelines, including through Al tools
Regularly re-estimate variance components as datasets expand and data sources are added

Continue refining selection indexes by incorporating sensor-derived sustainability traits

AN N N NN

Continued training of the next generation of professionals (throughout the whole dairy

chain)
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Conclusions

v Sensor technologies provide powerful opportunities to improve health, welfare,

efficiency, and overall sustainability of dairy cattle breeding programs

v Success depends on:

Fair data governance and sharing agreements across stakeholders

Integration, standardization, and harmonization of datasets

Robust data cleaning, validation, and quality control

Centralized platforms and collaborations among key stakeholders at the

(inter)national level
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Thank
You!

E-mail: britol@purdue.edu
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