Economics of early detection of diseases by using BCS

Henk Hogeveen

Precision dairy farming (PDF)

- Monitor physiological parameters related to production, health or fertility of individual cows
- Automatic detection of events (e.g. estrus and mastitis detection)

Economics of precision farming

Same information for lower costs

- Labour savings
- Laboratory savings
- Better information
 - Precision
 - Number of measurements

Value of information

Framework from an international group of researchers

NJAS - Wageningen Journal of Life Sciences

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/njas

Assessment of the value of information of precision livestock farming: A conceptual framework

Cristina Rojo-Gimeno^{a,b}, Mariska van der Voort^c, Jarkko K. Niemi^d, Ludwig Lauwers^{a,c}, Anders Ringgaard Kristensen^f, Erwin Wauters^{a,a}

So needed knowledge to evaluate economics of BCS sensors

- Comparison of information with and without BCS measurement
- What to do with information management choice sets
 - More choices
 - Better targeted choices
- Effect of choices
 - Diseases
 - Production, culling, expenditures

Intention of farmers in using the choice set

We know about costs of ketosis

Clinical ketosis case: € 709 (64-1196) Subclinical case: € 150 (18-422)

Treatment = Milk loss = Reproduction

Culling

Other diseases

27%

B

Overall: € 3,613 per farm (130 cows)

How much ketosis can be reduced

Literature highly theoretical

- Stochastic simulation model, with biological relationships
- BCS was modelled as well as odds of BCS with disease
- Potential benefit of automated BCS based on expert survey -> disease reduction

Assessing the pote an automated dain condition scoring s stochastic sin

J.M. Bewley, M.D. Boehlje, A.W. Gra S.D. Eicher, and M

Potential benefits (1-6) - 45 US experts

Benefit	Rating
Disease reduction	1,86
Cohort management	2,95
Reproduction	3,09
Animal well-being	3,68
Energy efficiency	4,09
Genetics	5,32

Results of modelling – based on all experts

Results – 25% decrease cows score 3.25 at calving

A second study – aimed at value of waiting to invest

- Explore the role of uncertainty about
- future technological progress
- in sensor technology
- on the adoption of sensors by dairy farmers

Delaying investments in sensor technology: The rationality of dairy farmers' investment decisions illustrated within the framework of real options theory

Real option theory

- Origin: option pricing in financial theory
- Early applications: investing in IT systems
- Calculate Net Present Value of investing now vs Net Present Value of investing over 5 years

Effects of detection of hyperketonemia

Input – Dutch circumstances

Variable	Value	Unit	Source	
Herd size	100	Number		
Voluntary waiting period	84	Days	Inchaisri et al., 2010	
Conception rate	50	%	Inchaisri et al., 2010	
Milk production	8572	Kg/305 days	CRV, 2016	
Ketosis				
Duration	125	Days		
Incidence	12.9	%	Adapted from Van der Drift et al., 2012	
Elevated incidence	52.4	%	Adapted from Van der Drift et al., 2012	
Effect on milk yield	-5.587	%	Adapted from Van der Drift et al., 2012	
Milk yield effect non-ketotic cows after ration adjustment	0.5	%	Authors' expertise	
Diseases				
Mastitis incidence	27	%	Van Soest et al., 2016	
Relative risk for mastitis because of ketosis	3.33	-	Raboisso	
Displaced abomasum incidence	5.1	%	Le Blanc	
Relative risk for displaced abomasum because of ketosis	1.61	-	Raboisso	

Performance BCS sensor

	Now	Postponed	
Probilities			
Hyperketonemia not detected, no changed ration	33%	30%	
Hyperketonemia detected, no effective ration change	33%	20%	
Hyperketonemia detected, and effective ration change	33%	50%	

Economic calculations

Difference net cash flow with and without sensor

• Milk, labour, reproduction, treatments, culling

$$CF_t = \left(MM_t + MR_t + LC_t + TC_t + MC_t\right)$$

 $NPV = (-INV_5 + \sum_{t=6}^{15} \frac{CF_t}{(1+r)^t}$

Net present values of investments

$$NPV = (-INV + \sum_{t=1}^{10} \frac{CF_t}{(1+r)^t}$$

Resultats body condition scoring

	Investment now	Postpone investment	Δ
Automated estrus detection			
Investment	14,400	14,400	0
Additional cash flow (€/year)	3,946	4,039	93
NPV (€)	15,043	12,350	-2,693
Automated body condition			
scoring			
Investment	8,000	8,000	0
Additional cash flow (€/year)	1,404	2,054	650
NPV (€)	-1,015	3,139	4,154

Concluding remarks

- Value information framework choice sets and uptake
- We do not know performance of BCS sensors
- Research so-far quite theoretical
 - Expert based
 - Assumption based
- Depending on situation, BCS sensors may be costeffective
- Don't forget other benefits then economic
 - Welfare, environment, supply chain

Thank you for your attention

henk.hogeveen@wur.nl

