

THE GLOBAL STANDARD FOR LIVESTOCK DATA

Network. Guidelines. Certification.

INTRODUCTION TO THE DESIGN OF AN INFRARED MILK ANALYZER

Per Waaben Hansen

Fellow Data Scientist, FOSS Affiliated Associate Professor, University of Copenhagen

Outline

- Why is the infrared spectrum so interesting?
- History of infrared analysis of milk
- Designing an instrument for milk analysis
- Summary

Why is the infrared spectrum so interesting?

Why is the infrared spectrum so interesting?

Fat Protein Lactose Citric acid Urea Fatty acid profiles Free fatty acids Adulteration screening Ketosis/Acetone/BHB Lactoferrin Mastitis Heat/Pregnancy **Blood** properties Exhaled methane

History of infrared analysis on milk

FOSS

- Flow system
- Sample temperature
- Sample cell (cuvette)
- Sampling

THE GLOBAL STANDA

- Spectral standardization
- Multivariate calibration

Flow system

- Flow system
- Sample temperature
- Sample cell (cuvette)
- Sampling
- Spectral standardization
- Multivariate calibration

Effect of sample temperature

FOSS

- Flow system
- Sample temperature
- Sample cell (cuvette)
- Sampling

THE GLOBAL STANDAR

FOR LIVESTOCK DATA

- Spectral standardization
- Multivariate calibration

Sample cell (cuvette)

- Flow system
- Sample temperature
- Sample cell (cuvette)
- Sampling
- Spectral standardization
- Multivariate calibration

Fat globules in milk

-

Subsampling

-

Homogenization

FOSS

 \rightarrow

50 µl analyzed

2.5 µl analyzed

FOSS

- Flow system
- Sample temperature
- Sample cell (cuvette)
- Sampling

THE GLOBAL STANDAR FOR LIVESTOCK DATA

- Spectral standardization
- Multivariate calibration

Spectral standardization

- Flow system
- Sample temperature
- Sample cell (cuvette)
- Sampling
- Spectral standardization
- Multivariate calibration

Multivariate calibration

References
3.78
6.50
2.85
4.23
3.88

. . .

Summary

- The infrared range contains useful concentration information on the constituents in milk
- The instrument design is critical for achieving reproducible results
 - Properties such as temperature control, sampling/homogenization, cuvette design, etc., are critical
 - Instrument standardization allows for the use of data between instruments

THE GLOBAL STANDARD FOR LIVESTOCK DATA

Network. Guidelines. Certification.

Thank you!

