

Webinar

Fatty Acids ExtraMIR project

Hélène Soyeurt <u>hsoyeurt@uliege.be</u>

28th March 2023

©Avelino Calvar Martinez

Soyeurt, 2023

Grelet et al., 2015

Many research developments BUT

Limited applications on field at herd and (a little bit less for) individuals ...

ExtraMIR

- ExtraMIR (Extra value from- smart use of -MIR spectra)
- Strong need for harmonization and standardization of terminology, analytical procedures, and tools for quality assurance.
- The entire dairy food chain is affected by these technological developments, IDF and ICAR are joining in structuring the current activity, offering a forum for exchange and cooperation, and harmonizing and standardizing definitions, methods, and procedures for the dairy sector globally.

Why Fatty Acids ?

- 106 respondents
- 59.4% want to actively participate in the project

Milk - Fatty acids

• Milk is a natural emulsion of fat suspended in water (= fat globules)

Fig1

- The nucleus of those fat globules is composed of triglycerides (98 to 99% of the fat in milk)
- Triglyceride = glycerol + fatty acids

• Adapted from Gervais et al. (2017)

• •

Cow level

- Knowing the FA composition is interesting for :
 - the efficiency of ruminal fermentation,
 - The metabolic health of the cow (e.g. energy deficit)
 - The quantification of enteric methane emissions

pH ruminal using FT-MIR FA predictions

pH = 3.8 + 0.061 x C18:0 + 0,18 x PUFA + 0.03 x SFA x trans C18:1

Milk is one of the most consumed food in the world

Industry interest

- Cow's well being linked to previous slides
- Butter spreadability
 - Higher value for C18:1 cis-9 / C16

Fatty Acids ExtraMIR project

4 Work packages

We have started to work ...

- 2022-2023 Brian Wickham Young Persons Exchange Program Bursaries Awards
- Michael Whittaker
 - Cattle Information Systems, UK
- ICAR Milk Analysis Sub-Committee and having Christian Baumgartner as Chair Travels in :
- Belgium
- New-Zealand
- Canada

4 Work packages

- ExtraMIR
- List potential contributors
- Compare reference analytical methods
- Standardize the methods or define a correction

- List potential contributors
- Create a common validation set
- Create a tool to compare the prediction performances

Fatty acids Equations

- At least 11 teams
 - 8 from the scientific community
 - 3 from spectrometer providers

Different accuracy

RPDcv	Relative RMSEcv	R ² cv	Interpretation for application
> 6	<5%	> 0.97	Any application (e.g., Saturated FA, Monounsaturated FA,)
4.2 - 6	<10%	0.94 - 0.97	Quality control (e.g. Medium-chain FA, C18:1 cis-9, Long chain FA)
3 - 4.2	<10%	0.89 - 0.94	Quantitative screening (e.g., C14:0, C4:0, C6:0)
2 - 3	<25%	0.74 - 0.89	Rough screening (e.g. Polyunsaturated FA, C17:0)
1.5 - 2	<25%	0.55 - 0.74	Allows to compare groups, discriminate high or low values (e.g., C16:1 cis-9)
1.5 -2	>25%	0.55 - 0.74	Highly imprecise, can be used to detect extreme values (e.g., C18:3 cis-9,cis-12,cis-15)
< 1.5	_	< 0.55	Not recommended

Need to compare the validation results on a same basis to have a more precise prediction error

ExtraMIR tool

Enter the date using the format YYYY-MM-DD

Enter your institution name

	Spectra Download	Data upload	Data check	Prediction statistics	Spectral representativity +		vity -	Validation performances Re			Repor	Report download Data sharing agreement									
			sampleID	X1	X2	Х3	X4	X5	X6	Х7	X8	Х9	X10	X11	X12	X13	X14	X15			
	Download	the vali	dation r	milk MIP	144	-0.08	-0.08	-0.08	-0.07	-0.07	-0.07	-0.06	-0.06	-0.06	-0.05	-0.05	-0.04	-0.03	-0.02	-0.01	
	choctro	LITE Vall	uation		145	-0.07	-0.07	-0.07	-0.06	-0.06	-0.06	-0.06	-0.05	-0.05	-0.05	-0.04	-0.04	-0.03	-0.02	-0.00	
	spectra				146	-0.08	-0.08	-0.07	-0.07	-0.07	-0.06	-0.06	-0.06	-0.06	-0.05	-0.05	-0.04	-0.03	-0.02	-0.01	
	🛓 Download			147	-0.07	-0.06	-0.06	-0.06	-0.06	-0.05	-0.05	-0.05	-0.05	-0.04	-0.04	-0.03	-0.02	-0.01	-0.00		
					148	-0.08	-0.07	-0.07	-0.07	-0.06	-0.06	-0.06	-0.06	-0.05	-0.05	-0.04	-0.04	-0.03	-0.02	-0.00	
					140	-0.07	-0.07	-0.07	-0.06	-0.06	-0.06	-0.06	-0.05	-0.05	-0.05	-0.04	-0.04	-0.03	-0.02	-0.00	

ExtraMIR tool under construction ... Collaboration development

Validation performances from the entire dataset - data view

	RMSE	MAE	R2	MeanPred	MeanRef	SdPred	SdRef	MinPred	MinRef
C4	0.013	0.101	0.788	0.102	0.111	0.018	0.021	0.062	0.063
C6	0.009	0.089	0.850	0.070	0.077	0.015	0.016	0.041	0.041
C8	0.007	0.075	0.825	0.044	0.049	0.011	0.011	0.019	0.022
C10	0.011	0.098	0.921	0.102	0.109	0.030	0.031	0.033	0.037
C12	0.014	0.109	0.921	0.124	0.133	0.038	0.040	0.041	0.038
C14	0.037	0.175	0.921	0.420	0.443	0.104	0.101	0.228	0.215
C14_1	0.006	0.068	0.807	0.040	0.042	0.012	0.013	0.017	0.017
C16	0.059	0.222	0.958	1.077	1.064	0.281	0.282	0.597	0.541
C16_1c	0.009	0.083	0.799	0.066	0.065	0.018	0.019	0.035	0.037
C17	0.002	0.038	0.919	0.027	0.026	0.006	0.005	0.014	0.016
C18	0.050	0.203	0.816	0.366	0.358	0.104	0.116	0.149	0.135
totC18_1trans	0.027	0.152	0.702	0.121	0.126	0.045	0.049	0.016	0.033
C18_1cis9	0.078	0.260	0.902	0.731	0.693	0.210	0.219	0.295	0.218
toC18_1cis	0.048	0.202	0.956	0.787	0.776	0.221	0.225	0.325	0.284
C18_2	0.010	0.091	0.855	0.089	0.082	0.016	0.017	0.049	0.037
C18_2c9c12	0.010	0.093	0.467	0.054	0.051	0.009	0.014	0.035	0.018
C18_3c9c12c15	0.004	0.053	0.866	0.022	0.024	0.006	0.007	0.010	0.006
C18_2c9t11	0.009	0.085	0.755	0.035	0.040	0.014	0.014	0.008	0.009
SAT	0.091	0.283	0.981	2.489	2.535	0.569	0.555	1.471	1.537
MONO	0.043	0.190	0.980	1.054	1.038	0.281	0.275	0.434	0.397
POLY	0.015	0.111	0.888	0.158	0.165	0.039	0.040	0.068	0.056
INSAT	0.050	0.207	0.976	1.216	1.204	0.315	0.311	0.508	0.454
SCFA	0.044	0.192	0.869	0.324	0.359	0.074	0.077	0.178	0.185
MCFA	0.108	0.293	0.961	1.838	1.895	0.468	0.461	0.987	0.943
LCFA	0.110	0.299	0.939	1.531	1.483	0.397	0.401	0.628	0.537
isoanteiso	0.018	0.124	0.698	0.087	0.101	0.019	0.018	0.038	0.056
omega3	0.004	0.057	0.791	0.028	0.029	0.008	0.007	0.013	0.014
omega6	0.007	0.073	0.874	0.095	0.096	0.018	0.019	0.051	0.047

4 Work packages

- Compare reference analytical methods Standardize the methods or define a correction **WP4**: **WP1**: **Communication** Reference **WP3**: **WP2**: List potential contributors Quality Modelling Create a common validation set Insurance Create a tool to compare the prediction performances

•

List potential contributors

- Compare the different spectral standardization
- Develop an approach to avoid spectral extrapolation when a FT-MIR prediction is made
- Create a World Representative Spectral Database (WRSD)
- Create a tool to define the part of the spectral variability covered by a calibration set

4 Work packages

- Propose a guideline to standardize the spectral data
- Propose a guideline to measure • the FA contents in milk
- Propose a guideline to validate the FA equation
- Discuss the use of FA on field for dairy farmers and industry
 - Compare the different spectral standardization
 - Develop an approach to avoid ۲ spectral extrapolation when a FT-MIR prediction is made
 - Create a World Representative Spectral Database (WRSD)
 - Create a tool to define the part of the spectral variability covered by a calibration set

•

List potential contributors

- List potential contributors
- Create a common validation set
- Create a tool to compare the prediction performances

Collaborative learning

Organization

For the registered persons, you will receive soon an e-mail...

Action leader: Hélène Soyeurt (BEL)

WP1

WP3

- Proposed WP leader :
- Josée Bordeleau (CAN)

• Poposed WP leader:

• Frédéric Dehareng (BEL)

- Participants
- Observers

• Participants

• Observers

– WP2

- Proposed WP leader:
- Steve Holroyd (NZ)
- Participants
- Observers

WP4

- Proposed WP leader:
- Michael Whittaker (UK)
- Participants
- Observers

For the registered persons, you will receive soon an e-mail...

You want to join the project

Send an e-mail to

Silvia Orlandini ICAR <u>silvia@icar.org</u>

Anabel Mulet Cabero FIL-IDF amulet@fil-idf.org

Webinar

Fatty Acids ExtraMIR project

Hélène Soyeurt <u>hsoyeurt@uliege.be</u>

28th March 2023

- Moderator: Rob Crawford (5min)
- Speaker 1: Christian ExtraMIR setting the scene for the joint IDF/ICAR project (5 min)
- Speaker 2: Steve ExtraMIR current applications and challenges along the dairy food chain (15 min)
- Speaker 3: Hélène ExtraMIR Fatty Acid Composition as first example for an ExtraMIR project (20 min)
- Q&A session (15 min)

- Milk bottle adapted from https://burst.shopify.com/photos/hand-holds-a-glass-bottle-of-milk
- Road picture : <u>https://pantonium.com/wp-content/uploads/2020/06/matthew-henry-_XYtu0lcVWo-unsplash-scaled.jpg</u>
- Fig1: <u>https://www.researchgate.net/figure/Spectral-range-for-near-infrared-NIR-and-mid-infrared-MIR-showing-wavelengths-nm_fig1_338633707</u>
- Fig1 : <u>https://chem.libretexts.org/Courses/University_of_Kentucky/UK%3A_CHE_103_</u> <u>Chemistry_for_Allied_Health_%28Soult%29/Chapters/Chapter_14%3A_Biological_Molecules/14.2%3A_Lipids_and_Triglycerides</u>
- Gervais et al. 2017: <u>https://www.agrireseau.net/documents/Document_99830.pdf</u>
- Soyeurt, 2023 : <u>https://www.sciencedirect.com/science/article/pii/S2666910222001570</u>
- Grelet et al. , 2015 : <u>https://www.sciencedirect.com/science/article/pii/S0022030215000910</u>
- <u>https://oxford-review.com/why-some-people-learn-better-using-cooperative-learning-techniques/</u>