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Various international governmental and non-governmental organisations agree that nourishing 
the world with sustainable diets in the years to come poses challenges to the world..
 
The Dutch agricultural system is a highly efficient  production system in a densely populated 
country, with a significant contribution to the value of exported goods. Such results come with 
an environmental burden, such as high releases of nitrogen, phosphate and methane from the 
involved production systems.
 
In the aim to create a more sustainable balance, the Dutch are working towards a circular 
agriculture system—also known as closed-loop agriculture. Key success factors are a focus on 
soil fertility in agriculture and adopting opportune practices in animal production, this to find a 
better balance between production and emissions to the environment. Animal production is to 
be based on optimized animal rations, reducing the waste, balancing the use of high inputs and 
recycling the by-products from primary production and from processing.
 
For closing the cycle, a local level action is essential in terms of greenhouse gas emissions like 
methane. ICAR members have an important role in such a transformation, through innovation 
and development, by following appropriate guidelines, through exchange about the local 
experiences and by sharing adopted solutions. 

Sustainable agriculture can help achieve several sustainable development goals, such as 
reducing hunger, improve peoples’ diets and living conditions and raise incomes.
 
These themes were addressed during the ICAR Annual Conference 2021. Specific sessions 
have been dedicated to “Supporting circular economy and how it affects the breeding goals”, 
to the “Creation of additional value from milk analysis”, to the “Data analysis and how the new 
analyses techniques bring better farm results”.

With more than more than 500 remote participants, the ICAR Annual Conference was very 
meaningful in creating awareness of the role ICAR has to play in creating more sustainable food 
systems and in safeguarding food security for current and future generations.
 

ICAR Secretariat
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Development of a tail scoring as health indicator for 
dairy cows

S. Meier, K. Abel and P.V. Kremer-Rücker

Animal breeding and husbandry, Department of Agriculture, Food, and Nutrition, 
Hochschule Weihenstephan-Triesdorf, Markgrafenstr. 16, 91746 Weidenbach, Germany  

Corresponding Author: prisca.kremer-ruecker@hswt.de

Research investigating necrotic tail tips in dairy cows resulting in necrotic tissues is 
scarce. However, there is evidence that in dairy cattle tail tip necroses exist with high 
prevalence. In piglets, the latest research described tail and ear necroses not because 
of tail and ear biting only, but because of swine inflammation and necrosis syndrome 
(SINS). Besides tails and ears, SINS includes inflammation of claws, heels, and teats. 
In cattle, tail tip necroses are described mainly in fattening bulls. As known so far, these 
findings are often discussed related to slatted flooring,intensive housing systems and 
management strategies. However, an association with sub-acute rumen acidosis and 
laminitis is described.

In order to investigate what kind of and how often tail tip alterations appear in dairy cattle, 
data of 87 German Holstein dairy cows were collected over a period of 12 months. All 
cows were evaluated for tail tip alterations, body condition score (BCS), and locomotion 
score (LMS) every two weeks. In addition, milk yield data resulting from performance 
testing were included. Thermographic images of the tails were taken once. Firstly, all 
kind of tail tip alterations were described and collected. After 6 months, we categorized 
the observed alterations and developed a tail scoring system. The scoring for each 
specified trait (tail tip, tail ring) ranged from 0 to 4. 

The overall prevalence for tail alterations was 94%. Especially tail tip alterations had 
a constantly high prevalence of 56%. Cows affected by an increased average tail tip 
score showed higher locomotion scores compared to others (P = 0.02). The prevalence 
of ring-like tail alterations increased from first to second lactation cows from 9 to 46%.
Regarding the BCS, lighter cows showed higher scores due to ring-like alterations 
than heavier cows (P = 0.054).The most often occurring anomalies of the tail were 
sports or scurf (21.6%), followed by verruca-like mass (10.2%), swelling (8.4%), and 
thinning (4.3%). 

The results and especially the scoring system can serve as a template for further studies 
considering larger samples sizes, to investigate prevalence for tail necroses and other 
tail anomalies in different herds and management systems. It was hypothesized, that 
an inflammatory condition in dairy cows showing up in altered/necrotic tail tips or rings 
exists, which is in relationship with claw disorders indicated by lameness. If so, the 
tail score of a cow could be used as health indicator to evaluate the health status in 
dairy production systems.

Keywords: Tail tip necrosis, tail ring constriction, tail tip ring, tail anomalies, dairy cattle 
production diseases.

Abstract
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Tail alterations are described mainly in feedlot cattle and fattening bulls (Drolia et al., 
1991; Schrader et al., 2001; Heers et al., 2017). The prevalence of tail tip alterations 
ranges from 2.5% (Hoedemaker, 2014) up to more than 80% (Kordowitzki, 2015). 
Findings were often related to slatted flooring, (sub) acute rumen acidosis and laminitis 
(Kordowitzki, 2015). 

In other species, tail tip necroses and tail ring constrictions are already known. They 
are related to heat stress in buffalo (Barakat et al., 1960) or to chronic inflammation 
in pigs caused by the Swine Inflammation and Necrosis Syndrome (SINS) (Reiner et 
al., 2019).

Knowledge regarding tail tip alterations in dairy cows is scarce. In-vivo investigations 
often suffer from small sample sizes (Ural et al., 2007). Scorings to investigate the 
severeness of tail alterations were developed on cows’ carcasses (Freitag et al., 2017; 
Heers et al., 2017), for feedlot cattle (Drolia et al., 1991) as well as for fattening bulls 
(Kordowitzki, 2015).

However, there is evidence, that dairy cows dealing with negative energy balance, 
(sub) acute rumen acidosis and lameness (Cook et al., 2004) because of multifactorial 
risk factors during lactation also show high prevalence of tail tip alterations. Therefore, 
our aims were to 

1. 	 Identify which kind of tail alterations occur in dairy cattle,

2. 	Calculate the prevalence of all kind of tail alterations,

3. 	Develop a tail scoring system, that can be used in-vivo,

4. 	Figure out which traits are in association with the severeness of tail alterations in 
dairy cattle.

In total, 87 German Holstein cows during their first to seventh lactation were included 
into the study. They were housed under field conditions in a loose housing system 
on a German dairy farm. The average milk yield was 10,149 kg containing 4.10% fat 
and 3.55% protein.

The region of the tail tassel was shaved and investigated every two weeks. Tail 
alterations were recorded over a period of 12 months from December 2019 to November 
2020. First of all, tail alterations were described and collected. After 6 months, we 
categorized the observed alterations and developed a tail scoring system. The scoring 
for each specified trait ranged from 

•	 0 (physiological),

•	 1 (hairloss),

•	 2 (scab/constriction),

•	 3 (bloody lesions/constriction),

•	 4 (necrotic tissue, part loss).

It was applied on the tail tip including ring-like alterations. Additionally, the body 
condition score (BCS) ranging from 1 to 5 (Edmonson et al., 1989) and locomotion 
score (LMS) ranging from 1 to 5 (Sprecher et al., 1997) were recorded at the same 
time. Milk yield recording data of the same period were added; thermal images of the 
tail tips (FLIR® T1030) and urine density data were taken once.

Introduction

Material and 
methods
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Data analyses were performed using R (R Core Team, 2020). Prevalence for all six 
groups of tail alterations were calculated by dividing the number of affected cows by 
the total number of cows under investigation and given in percent. Means between 
two groups were compared using a Wilcoxon test.

All different kind of tail alterations were categorized using the following descriptions: 
tail tip alteration, ring-like alteration, swelling, thinning, scurf, and verruca-like mass. 
Prevalence for all tail alterations during this study was 94%; only five cows were 
unaffected. The prevalence for all groups of tail alterations were: tail tip alteration 
56%,ring-like alteration 38%,scurf 21.6%, followed by verruca-like mass 10.2%, 
swelling 8.4%, and thinning 4.3%. 

The group of tail tip alterations had a high prevalence during all lactations (Figure 1). 
Ring-like alterations were on a low level during the first lactation (9%) and increased to 
the second (46%) and >third lactation (52%). On average, verruca-like mass showed 
low prevalence, but increased from first (4%) to >third lactation (14%). Scurf showed 
a decrease from the first lactation (27%) to >third lactation (19%).

The tail scoring system ranging from 0 to 4 was used to describe the severeness of 
tail tip alterations and ring-like alterations. The scoring for tail tip alterations increased 
by higher LMS (P = 0.015, Figure 2). Cows with a LMS of 1 (normal walk) had a mean 
tail tip score of 0.9, which was suggestively different to cows with LMS of 2 (mildly 
lame) with a mean tail tip score of 1.2 (P = 0.092) and significantly different to cows 
with a LMS of 3 (moderately lame) and a mean tail tip score of 1.5 (P = 0.012). LMS 
4 (lame, n = 8) and 5 (severely lame, n = 2) were not significantly different.

Cows affected by ring-like alterations were grouped into lighter and heavier cows with 
an average BCS of < 3 and > 3 during the whole lactation period, respectively. The 
lighter cows showed suggestively (P = 0.054) higher ring-like alterations (tail ring score 
mean = 1.9) compared to heavier cows (mean = 1.1).

The prevalence for all kind of tail alterations in dairy cows was high. Especially tail tip 
alterations were found showing a higher prevalence (56%) compared to other studies 
(2.5% to 37%; Hoedemaker, 2014; Freitag et al., 2017; Heers et al., 2017). This could 
be due to the use of a different scoring system and to the preparation of shaved tail 

Results

Figure 1. Prevalence grouped as tail tip alteration, ring-like alteration, swelling, thinning, 
scurf, and verruca-like mass per lactation (1st, 2nd, >3rd).

Discussion
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tassels during our study, which allows a better investigation of the tail tip compared 
to unshaved tail tassels.

Tail tip alterations were evaluated using the new scoring system ranging from 0 to 4. 
The locomotion score was collected using the scoring of Sprecher et al., 1997. Data 
showed that cows affected from mildly lameness (LMS 2, mean = 1.2, P = 0.031) and 
moderate lameness (LMS 3; mean 1.5; P=0.004) were also affected from higher tail 
scores. Lameness is caused by painful conditions of the limb or claw, which can also 
result from systemic disorders, e.g. laminitis, which is amongst others caused by sub-
acute rumen acidosis. According to literature, sub-acute rumen acidosis influences 
both, laminitis and tail tip alterations (Cook et al., 2004; Kordowitzki, 2015). Especially 
high yielding dairy cows are at risk of (sub-) acute rumen acidosis because of high 
concentrate amounts. This could eventually explain the high prevalence of tail tip 
alterations during this study (øherd milk yield >10,000 kg), however the feed ration 
was not evaluated here.

Interestingly, ring-like alterations were on a lower level during the first lactation (9%) 
and increased to the second (46%) and >third lactation (52%). As mentioned before, 
the average BCS tended to be related to the severeness of ring-like tail alterations. 
This effect could eventually be explained by the metabolic stress of cows, especially 
caused by high milk yield contemporaneous to low feed intake during the early lactation 
period (Römer, 2011). 

Conversely, neither LMS showed an effect on ring-like tail alterations nor BCS did 
on tail tip alterations. This could be due to the fact, that these alterations have to be 
considered independently from each other, or that the sample size was too low to 
observe significant relations. Data from milk performance testing (milk yield, fat and 

Figure 2. Cows affected by tail tip alterations measured by the Tail Tip Score 
(ranging 0-4) showed higher Locomotion Scores (ranging 1-5). Number of 
data (count) and mean tail tip score are given above box plots besides level 
of significance (*P <0.05; **P<0.01, ns = not significant) from Wilcoxon test 
comparing each mean to the mean of LMS 1.
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protein content and ratio, somatic cell count, days in milk) also did not show an effect 
on our dataset. 

There is evidence that high yielding dairy cows, amongst other performance- and 
feed-related diseases, show health disorders accompanied by tail tip alterations. Since 
2019 (Reiner et al., 2019), in pigs SINS is reported to influence tails, ears, teats, and 
claws, appearing as chronic inflammation and necrotic tissue. Finally, we hypothesized 
that there might be also health disorders and inflammatory conditions in dairy cows 
resulting in tail alterations, which could be part of a Bovine Inflammation and Necrosis 
Syndrome (BINS).Further studies are required to evaluate if the tail scoring presented 
here could potentially be used as an early-warning system to measure the severity of 
tail alterations in dairy cows.
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Following the German Animal Welfare Act from 2014, livestock keepers/stock farmers 
in Germany are obligated to gather und evaluate data regularly in order to monitor 
their animals’ welfare. Since the legal basis doesn’t present detailed implementations 
regarding the extent and method of monitoring, farmers are left alone finding a 
way to meet legal requirements. To challenge this problem the Operational Group 
“Tierwohl‑Check” was initiated within the European Innovation Partnership (EIP-AGRI) 
to develop a management tool assisting dairy farmers to meet legal requirements and 
support their general herd management at the same time. A distinctive feature of EIP 
projects is their practical orientation. In order to create practical solutions, farmers are 
directly involved in the work process of the Operational Group supporting bottom-up 
interactive innovation. The principal objective is to assist farmers with an easy-to-
use application which provides reliable indicators, reveals weak points and therefore 
supports herd management. At the same time the evaluation can be used to meet 
the legal requirements to document animal welfare. Accompanying the development 
process, the project’s aim is to develop and implement an e-learning program for farmers 
and to assist multipliers such as veterinarians, consultants and others by providing 
training material as a train-the-trainer approach. This “Tierwohl-Check” indicator set 
for on-farm self-monitoring of animal welfare in dairy cattle will be presented as well 
as an assessment framework regarding the welfare outcomes (target and threshold 
values, benchmarking).

Keywords: Monitoring system, key indicators, animal welfare, animal health, self-
assessment, web application, dairy sector.

A main idea of Tierwohl-Check was to avoid re-discussing the suitability of well-known 
indicators, since this fundamental work has been carried out in two fundamental 
projects throughout Germany. While various initiatives have developed a variety of 
reliable indicators to effectively monitor the welfare of dairy cows, “Tierwohl-Check” 
directly benefited from the outcomes of the projects “Q Check” (German Association for 
Performance and Quality Testing (DLQ), https://infothek.q-check.org/) and “EiKoTiGer” 
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Table 1. Analyse of the existing data for the control year 2019of 2,585 dairy farms in Schleswig-Holstein, 
Germany (LKV SH 2020) giving the mean values of all farms (average) as well as the top +25% / +10% of 
farms and the low-ranking -25%/-10% of farms. Target and alarm values used in Tierwohl-Check are given 
in the right columns.  
 

Indicators -10 % -25% Average +25% +10% Target Alarm 

Culling rate  [%] 21.9 27.0 32.8 39.4 46.4 < 25 > 40 

Culling rate under 100 days p.p.  
[%] 

3.6 5.6 8.6 12.2 16.4 < 5 > 10 

Productive life span (in months) 46.7 40.8 35.4 30.7 26.5 > 48 < 30 

Mortality cows  [%] 1.1 2.4 4.0 6.2 8.8 < 2 > 5 

Cows with SCC<= 100 [%] 73.5 67.9 60.6 52.7 44.0 > 75 < 50 

Cows with ZZ > 400 [%] 5.8 7.8 10.7 14.2 18.6 < 5 > 15 

Healing rate during dry off [%] 72.7 64.5 55.1 44.4 33.8 > 75 < 50 

Infection during lactation[%] 9.4 14.6 21.6 30.5 40.0 < 15 > 30 

First lactation mastitis[%] 16.2 22.2 30.0 38.5 47.6 < 15 > 30 

Chronical infection [%] 0.0 0.0 0.8 1.9 3.2 < 1 > 5 
Milk fat-protein ratio ≥ 1.5(100 
days p.p.) [%] 

4.3 6.1 9.1 13.1 18.2 < 10 > 15 

Milk fat-protein ratio < 1.0 (100 
days p.p.) [%] 

1.5 2.9 5.3 8.9 13.4 < 5 > 15 

Dead birth rate cows [%] 0.0 1.8 4.2 6.9 9.6 < 5 > 10 

Dead birth rate heifers [%] 0.0 2.0 6.1 10.7 16.2 < 5 > 10 

Mortality rate calves 0-3 weeks[%] 0.0 0.0 2.1 4.4 7.6 < 3 > 5 

Mortality rate 3-12 weeks[%] 0.0 0.0 2.1 4.3 7.4 < 2 > 5 
Mortality rate young stock 3 - 6 
months [%] 

0.0 0,0 0.0 2.3 4.7 < 1 > 5 

 

(Association for Technology and Structures in Agriculture (KTBL), https://www.ktbl.
de/themen/tierschutzindikatoren-milchrinder). Dairy farmers in Germany can already 
rely on an existing strong infrastructure, which provides four existing systems of data 
recording. Q Check following an interdisciplinary approach, has examined potential 
indicators from existing data and produced a set of 14 indicators mainly relating to the 
health of dairy cows. This set of indicators was fully implemented into the Tierwohl-
Check tool and is presented in table 1.

At the same time, a self-assessment tool should provide a good evaluation on farm 
using indicators scoring the animals’ condition. EiKoTiGer has focused on the collection 
of data on farm, evaluating indicators for milking cows, calves and beef cattle. For 
Tierwohl-Check the animal-based indicators for body condition, cleanliness, integument 
alterations, tail injuries, claw condition and lameness, of dairy cows as well as adequate 
use of lying places, rising behaviour and water availability were selected (Brinkmann et 
al. 2020). For herds with horned cattle, horn injuries were added to the set of indicators 
(Johns et al. 2020). The combination of the two sets of indicators ensures a maximum 
usage of the existing data from milk recording and cattle database and enables the 
user to describe the animal’s welfare state by generating on-farm data.
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Material and 
methods

The set of indicators is completed by a short overview of the cows’ husbandry, making 
it easier for consultants or veterinarians to support farmers with the results of their self-
assessments. The set of indicators allows a precise documentation of the animal welfare 
situation as well as conclusions on the animals’ health, husbandry and management.

The integration of practical farmers throughout the project work was a key factor of 
finding successful solutions. For getting these indicators into practical use for the 
farmers, it was the aim to provide a tool to easily analyse the animal welfare without 
too much effort. At the same time the farmers should gather valuable information to 
optimize their individual herd’s management..

Together with the group’s farmers, the application setup was carefully optimized during 
several practical cow-side test sessions, ensuring high usability and supporting user’s 
focus on the important points. Thus, it was possible to take into account the point of 
view on animal welfare of practical dairy farmers, research institutes and consulting 
organisations.

By access to LKV’s cattle register, the application knows all animals in the herd 
according to the last milk recording and offers the scoring of indicators by using 
representative pictures for each indicator. The number of cows recommended to be 
scored is automatically calculated according to the herd size.

When optimising the order of indicators presented in the app, the testing was expanded 
onto more dairy farms in Schleswig-Holstein. Therefore, a group of 20 farmers trained 
to correctly score the animal-based indicators and get used to the app interface. The 
training was carried out in in one-day training events in the stable and due to an online 
training. All participants carried out a full data collection afterwards with their own herd, 
using the recommended sample size. The herd size of the farms involved varied from 
60 to over 300 cows and included farms with all types of milking systems, with sample 
sizes from 35 to a maximum of 80 cows to be scored. Feedback of the farmers involved 
was collected after the data collection by a short survey.

In addition to the testing carried out by farmers, further data was collect on 13 farms by 
a project member to identify all remaining technical issues. After a short introduction 
to the herd, the data collection was all carried out by the project staff and the results 
were discussed with the farmer directly after the evaluation.

For each indicator a target and an alarm value was defined in the previous projects. 
The indicators from Q Check were checked against the existing data from the 
Landeskontrollverband Schleswig-Holstein e.V. (LKV SH) for the control year 2019. 
The results are presented in table 1(LKV SH 2020).

To meet legal requirements, Tierwohl-Check provides documentation and evaluation of 
the collected data. The app offers a report to easily analyse the animal welfare situation 
of the herd and detects weak points. Results are presented and stored directly in the 
app and in addition can be printed or send out as a pdf file. In addition, a benchmark 
will be implemented in the future. When the users notice weak points in their report, 
the results can be used to share information with their consultants or veterinarians to 
focus on problems specific for their herd or to keep track of developments over the time.

To help farmers getting used to animal based indicators and offer a training opportunity 
before scoring cows in the stable, an e-learning tool will provide further information 
and assistance. Also broader live trainings and seminars shall be enabled during the 
project and beyond.
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Results and 
discussion

Conclusion

The chosen indicators and usability of the app were well accepted by the farmers 
involved. All participants were asked to rate the usability of the app, the amount of time 
used for the data collection, the readability and the quality of the pictures presented, 
technical issues and the relevance of the chosen indicators. While the content-related 
points and the overall usability gained positive feedback, remaining technical problems 
were addressed more distinct and could be optimised in the following time. The 
succeeding data collection by the project member to detect the described technical 
problems was a valuable approach and sensibly complemented the tests by the farmers.

When analysing the status-quo data of the LKV SH the given target and alarm values 
showed a very good suitability. The data of 2,585 dairy herds were analysed for the 
period of one year, representing 85.8 % of the dairy cows in Schleswig-Holstein.

Table 1 shows the average value reached by the herds, as well as the better 25/10 % 
and the less successful herds 25/ 10 %. The outcome was then compared to target and 
alarm values given by Q Check. For all indicators, except the first lactation mastitis, the 
average of the herds was able to achieve values between the target and alarm value 
or even better. For the first lactation mastitis, only the better 25% of the herds were 
better than the alarm value, but didn’t achieve the target value.

Comparing the data base for the indicators of existing data and the results of the data 
collection on farm, the existing data was more representative for dairy farms in northern 
Germany. For the selection of farmers for the data collection on farm, the requirements 
were rather to involve motivated participants to gain a high-quality feedback of the app 
performance, than to gather representative amount of data for the evaluation of animal 
welfare in Schleswig-Holstein.

For a successful implementation into practical farming, self-assessments may not 
only be carried out to follow legal requirements, but have to create a real added value 
for the farmers and their livestock. The attempt to offer a digital tool with reliable 
recommendations on how self-assessments can be carried out, found broad acceptance 
by the farmers involved.

A high acceptance of the app in future mainly depends on good usability and the 
realized benefits for animal health and welfare following from reliable data analysis 
and consequent management measures.

Therefore the process of improving the app performance requires further consistent 
efforts.The execution of regular self-assessments remains to the farmers themselves. 
For making thebest possible use of the documentation, evaluation and benchmark given 
out, consultants and veterinarians ought to be involved to implement effective measures.

In the end, the implementation of a self-assessment tool based on scientifically 
well‑developed indicators and consequently designed in cooperation with farmers 
is the opportunity to be one step ahead of further legal regulation and tosustainably 
improve the animal welfare situation of dairy cows.
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The intersection of on-farm animal welfare evaluation 
and technology integration as the future of animal‑based 

indicators for animal welfare measurement: an example 
from the United States

J.S. Jonker and E.E. Yeiser-Stepp
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More than a decade ago, the U.S. dairy industry recognized that meeting the nutritional 
needs of a growing and diversified population requires a sustainable food system with 
transparent production practices and proof points. To address these needs, the U.S. 
dairy industry formed the National Dairy Famers Assuring Responsible Management 
(FARM) Program. This program commits U.S. dairy farmers to high-quality, on-farm 
management practices in animal care, antibiotic stewardship, biosecurity, environmental 
stewardship and workforce development. FARM’s transparency provides consumers 
with confidence that their dairy products are produced in keeping with the highest 
level of science-based metrics and best practices. The FARM Animal Care program 
is comprised of three components: best management practice manuals, second-party 
farm evaluations and third-party verification. A key component to evaluating animal care 
through the second-party farm evaluations includes scoring animal-based indicators 
for animal welfare. Those indicators scored include: body condition, hygiene, hock 
and knee lesions, locomotion and broken tails. With the advancement of precision 
technology available to U.S. dairy herds, FARM is working to overlay the data these 
technologies provide with the animal-based indicator scoring systems. In turn, program 
implementation burden on dairy farmers, cooperatives and processors will be eased 
while providing more objective, animal-based data to support demonstrating U.S. 
dairy’s commitment to animal welfare.

Keywords: Social responsibility, animal welfare, animal care, precision technology.

In 2009, the National Milk Producers Federation with support from the U.S. levy program 
Dairy Management Inc.developed the National Dairy Farmers Assuring Responsible 
Management (FARM) Program1. FARM is open to all U.S. dairy farmers, cooperatives 
and processors. The Innovation Center for U.S. Dairy coordinated alignment behind 
the FARM Program as the industry-wide social responsibility program for on-farm 
production. The goal is to assure dairy consumers and customers that dairy farmers 
care for the animals, workforce and land in a humane and ethical manner. 

Through FARM Animal Care, the U.S. dairy industry has embraced on-farm evaluations 
to assess animal welfare through various science-driven standards and best practices, 
instilling a commitment tocontinuous improvement. It also identifies areas of risk and 
liability to the industry in terms of consumer perception. 
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As the world’s first Animal Care program to meet the International Organization for 
Standardization Technical Specification requirements for the World Organization for 
Animal Health dairy cattle welfare standards, FARM Animal Care provides assurances 
throughout the supply chain regarding on-farm animal welfare through three primary 
components: best management practice manuals, second-party farm evaluations 
conducted by trained and certified evaluators and independent third-party verification 
to demonstrate the program’s integrity. 

The best practices and standards that make up the FARM Program are required to have 
a scientific and technical basis. These standards are reviewed every three years to 
ensure that the program is keeping up with the latest science-based recommendations. 
Best management practice manuals, including the Animal Care Reference Manual2 
and the Milk and Dairy Beef Drug Residue Manual3, provide a comprehensive set of 
expectations and are educational tools and resources for farms as they develop on-
farm best management practices.

The second-party farm evaluation follows a standardized protocol and evaluation 
rubric based upon current FARM Program standards and best practices. Trained and 
certified evaluators conduct triennial on-farm evaluations include interviews with farm 
owners and employees, review of content and implementation of written protocols, and 
evaluation of animal-based indicators for animal welfare.   

Material and 
methods

Figure 1. Body Condition Scoring Guide.	
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The animal-based indicators for animal welfare, each having a unique scoring system 
with industry benchmark, are conducted through observation of individual animals. 
These include:

•	 Body Condition Score – an indicator for nutritionally adequacy.

•	 Hygiene Score – an indicator for sanitation and cleanliness.

•	 Locomotion Score – an indicator for hoof and leg health.

•	 Hock and Knee Lesion Score – an indicator for resting area conditions.

•	 Broken Tail – an indicator for stockmanship.

In order to ensure consistency in the evaluation of these animal-based indicators, a 
number of evaluator scoring guides have been developed (Image 1 and 2) that serve 
as a reference during second-party evaluation animal-based observation.

Newer on-farm technology data streams, ranging from in-line milk quality readers to 
animal activity monitoring, will be incorporated into FARM Animal Care as an overlay 
for key animal welfare indicators augmenting existing on-farm evaluations. 

The third component of FARM Animal Care is a third-party verification process. 
This process helps to demonstrate program integrity by objectively evaluating the 
consistency and accuracy of farm evaluators and the program itself. This process, 
too, would be greatly enhanced by the integration of on-farm technology data streams. 

Robust adoption has allowed the U.S. dairy industry a unified approach to animal 
welfare. In its fourth iteration, FARM Animal Care participation includes 99% of U.S. 
milk production from dairy farmers in 49 states  – 31,000+  dairy farm participants 
from 130+ dairy cooperatives and processors.

In Version 4.0 of FARM Animal Care, benchmarks for animal-based observations 
have been set based upon previous program version data collection and scientific 
literature review. The benchmarks4 are outlined in Image 3 and designates which age 
classes these respective measures are evaluated. Some age classes have been found 
to be at lesser risk for locomotion, hock and knee lesions and broken tail incidence 
and therefore, are not evaluated. Animal-based observations scores and benchmark 
achievement is determined within each respective age classes i.e. 90% benchmark 
for hygiene is a goal for lactating cows, pre-weaned calves, post-weaned heifers and 
dry cows respectively instead of 90% cumulatively in all age classes. 

In Version 3.0 of the program, FARM data demonstrated the animal observation 
benchmark standards were met on the majority of all herds evaluated. On 33,000 
facilities evaluated throughout the entire program cycle (2017-2019) are listed in table 1.

Version 4.0 of FARM Animal Care, that has been in place since January 1, 2020, 
demonstrates similar trends in the majority of facilities evaluated meeting animal 
observation benchmarks in all age classes for specific animal-based measures. On 
3,100 facilities evaluated to date, the results are reported in table 2. 

Recognizing the risk of subjectivity that exists when individual evaluators are assessing 
these animal-based measures, the integration of precision on-farm technology data 
streams for animal-based measures, will enhance the objectivity of these data points. 
This will further support the overall consistency in the assessment of animal welfare 
providing stronger, unified assurances for the supply chain.

Results
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Table 1. Version 3.0 Animal-Based Observation Standard Compliance at time of a facility 
evaluation. 
 

Benchmark Standard Met Standard Not Met 
Hygiene: 
≥ 90% all animals score 2 or less 69.3% 30.7% 

Locomotion: 
≥ 95% lactating and dry cows score 2 or less 98.0% 2.0% 

Body condition: 
≥ 99% all animals score 2 or higher 98.3% 1.7% 

Hock and Knee Lesion: 
≥ 95% lactating and dry cows score 2 or less 95.8% 4.2% 

 
 
Table 2. Version 4.0 Animal-Based Observation Standard Compliance at time of a facility evaluation. 
 

 Hygiene: 
≥ 90% score 2 or less 

 Standard Met Standard Not Met N/A 
Pre-weaned calves 74.1% 3.4% 22.4% 
Post-weaned heifers 59.7% 24.8% 15.5% 
Pre-fresh heifers/dry cows 79.0% 10.0% 11.0% 
Lactating Cows 89.7% 9.6% 0.7% 

Body Condition: 
≥ 99% score 2 or higher 

 Standard Met Standard Not Met N/A 
Pre-weaned calves 77.0% 0.5% 22.5% 
Post-weaned heifers 83.6% 0.9% 15.5% 
Lactating cows 97.7% 1.5% 0.8% 

Locomotion: 
≥ 95% score 2 or less 

 Standard Met Standard Not Met N/A 
Lactating cows 96.9% 1.9% 1.2% 

Hock Lesion: 
≥ 95% score 2 or less 

 Standard Met Standard Not Met N/A 
Lactating cows 94.5% 4.7% 0.8% 

Knee Lesion: 
≥ 95% score 2 or less 

 Standard Met Standard Not Met N/A 
Lactating cows 98.5% 0.6% 0.9% 

Broken Tails: 
≥ 95% do not have broken tails 

 Standard Met Standard Not Met N/A 
Lactating Cows 80.0% 17.8% 2.2% 

*N/A indicates age class is housed off-site or all animals in age class were unable to be scored 
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Figure 2. Evaluator Pocket Guide.

Figure 3. FARM Outcomes-Based Animal Based Observations with benchmarks for 
each animal age class.

 
 
 

 
 
Figure 2: Evaluator Pocket Guide. 
 

 
 

 
Image 3. FARM Outcomes-Based Animal Based Observations with benchmarks for each animal age class. 
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Animal care is a constant commitment for dairy farm owners, managers and their 
employees. A science-based, industry-wide social responsibility effort such as the 
U.S. National Dairy FARM Program creates a framework for on-farm animal care and 
fosters a culture of continuous improvement. The Program’s adoption of precision 
technology data streams will further ease the implementation burden on dairy farmers 
and cooperatives and processors while providing more objective, animal-based data 
to support demonstrating U.S. dairy’s commitment to animal welfare.

National Dairy FARM Program; Available from: 
https://nationaldairyfarm.com/ 

Animal Care Reference Manual 4; Available from: 
https://nationaldairyfarm.com/farm-animal-care-version-4-0/

Milk and Dairy Beef Drug Residue Prevention Reference Manual 
2020; Available from: https://nationaldairyfarm.com/wp-content/uploads/2018/10/
DRM2020-Web.pdf

FARM Animal Care Evaluation Preparation Guide Version 4.0; Available 
from: https://nationaldairyfarm.com/producer-resources/farm-animal-care-
evaluation-prep/

Conclusion
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In digital farming, machine learning is already widely used to optimize the production 
using sources such as genomics, health, welfare, production, and environmental 
data. However, this increasing use of machine learning has led to the emergence of 
multiple types of confidentiality and integrity breaches targeting both the models and 
the data they have been trained on. Our main objective in this paper is to discuss 
possible security issues that could arise in digital farming due to the use of machine 
learning techniques and the urgency to implement innovative countermeasures to 
prevent them. First, we propose a security model dedicated to the specific settings 
and threats of the digital farming context. In this model, we identify the resources at 
risk, define the different classes of actors, determine the risk vectors, and propose 
some realistic attack scenarios. Afterwards, we use this model to put in perspective 
the machine learning induced risks and show how they may adversely affect digital 
farming. The considered attacks encompass model theft, model inversion, membership 
inference, data poisoning and adversarial examples. For each of these threats, we 
also briefly revied possible mitigation means, such as differential privacy, prediction 
access control and robust statistics.

Keywords: Digital farming, cyber security, security model, machine learning.

German Agricultural Society defines digital farming as the evolution of smart farming 
to better emphasize that nearly all aspects of farming now heavily rely on digital 
means (DLG Committee for Digitization, Work Management and Process Technology 
et al., 2018). Collecting data massively from a wide variety of sources has allowed to 
take smart farming to a new level, leveraging big data to further improve the power 
of the decision-making system. To do so, various kind of data are collected such as 
environmental, production, health, welfare, genomics, and management. Machine 
learning (ML) is the core concept behind decision-making system, in which a sample of 
data called training dataset is used to generate a predictive model. ML is widely used 
across many industries and as ML techniques become, cybersecurity threats emerge 
(Papernot et al., 2016) putting data confidentiality and production system integrity at risk. 

Many actors have stated that cybersecurity is a concern in agriculture. For instance, 
a 2019 report from the U.S. Government Accountability Office (Dodaro, 2019), has 
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indicated that improving cyber security should be one of the main priorities for actors 
in the agriculture sector. Geil et al. (2018) presented a survey in which they show that 
farmers are being directly affected at large scale. Window (2019) has conducted a 
study that presents major issues concerning data privacy, data ownership and level 
of attention given to cyber security in agriculture and all those points are requirements 
provided by the German Agricultural Society as well in their recent position paper.

A literature review allows us to conclude that working specifically on ML induced 
cybersecurity risks is a missing gap in the literature. Indeed, several reports focus on 
networking and Internet of Things (IoT) related risks (Gupta et al., 2020; West, 2018) 
and several others on Big Data (Sykuta, 2016; Wolfert et al., 2017). However, only a 
few works have been produced to study risks introduced by data analysis techniques 
in digital farming particularly in dairy industries. The U.S. Department of Homeland 
Security (Champion et al., 2018) has also released a report in which they mention 
machine learning and at the regulatory level, farm data ownership is often present in 
the specialized literature (Sykuta, 2016; Window, 2019; DLG Committee for Digitization, 
Work Management and Process Technology et al., 2018).

To study ML induced threats to digital farming, we first propose a security model adapted 
to this context of dairy farms, particularly in Canada, before studying the data life cycle 
and its interactions with the different resources and actors. Secondly, we propose an 
adversarial model to determine realistic threat vectors to ML systems in digital farming 
before proceeding with the investigation of the risks associated to ML, looking at five 
known vulnerabilities of ML systems and three possible practical mitigation strategies. 
Finally, we discuss another ML related security topics that should be investigated along 
ML induced threats.

ML applications rely mainly on two assets: the training dataset and the learnt model. We 
will use the CIA framework to understand the impact of potential compromises on these 
resources. Confidentiality of the training dataset may be critical for privacy reasons, 
as for example valuable data such as genomics are used in digital farming, but also 
because it is part of the intelligence developed by ML application developers. Integrity 
of the training dataset is key to build reliable ML model and availability seems to only 
be a concern at the operational level. In addition, the confidentiality of the ML model 
is important in settings in which it is a monetizable resource such as ML as a Service 
(MLaaS), which is a form of pay-per-request service that could be compromised if the 
ML model was to be stolen. Furthermore, the ML model is a statistical representation of 
the training dataset as its confidentiality impact directly the confidentiality of the dataset. 
The integrity of the ML model is a concern for situations in which the ML predictions 
are used in a sensitive context such as farm management. Availability is a concern in 
time sensitive settings and for systems that cannot be substituted. 

Wolfert et al. (2017) proposed a data chain in their framework for big data in smart 
farming. We adapted it to exclude network/infrastructure-based risk and focus on 
machine learning induced threats to assets described earlier. The principal node is 
data processing in which the ML model is developed. This node has two interfaces, 
the upstream data acquisition node in which the training dataset is being constituted 
and the downstream marketing node in which the end user is presented with a tool to 
query the model and obtain the associated predictions.

In Figure 1, we annotate the data chain to integrate actors found at each stage of the 
data lifecycle. The data provider is the main actor at the data acquisition stage, which 
is often the farmer but could also be laboratories in some cases (e.g. sample analysis 
on milk). We refer to the data collector to formalize the intermediary step consisting in 

Security model

Data chain: resources 
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centralizing and storing the data. The data processor is the actor found at processing 
stage, who pre-process data to form the training dataset and train the model. Once 
the model is trained, the service provider refers to the actor in charge of wrapping the 
model in a product that can be distributed. Finally, the end user is the actor present at 
marketing stage that makes requests and applies predictions using the model through 
the marketed tool.

We adopt the point of view of the data processor who forms the training dataset 
(preprocessing) and engineers the ML model (processing) because he is the actor 
having full and direct access to the resources that we aim to protect. We assume that 
the attacker could be or could impersonate a data provider (upstream) or an end user 
(downstream). For instance, in the case of Machine Learning as a Service (MLaaS), the 
attacker could target the model confidentiality for financial gain. In addition, if training 
dataset contains valuable information (e.g., genomics and/or production data), the 
attacker could target training dataset confidentiality. Finally, when the ML system is 
used for critical applications (food supply or seed production), the attacker could target 
integrity/availability of training dataset, ML model or prediction. 

For the specific context of dairy digital farming, there can be a wide range of adversaries 
(insiders to the context of digital farming or not), thus leading to various levels of risks, 
ranging from a farmer seeking financial gain to eco-terrorists aiming to disrupt the food 
supply. As a result, the adversary is likely to have detailed knowledge about the digital 
farming and could have weak to strong technological skills. To study the attack surface 
and related threat vectors, we look at the interfaces of the ML system leaving aside 
all security concerns that are not inherently tied to ML (network, access control…). 

Looking at the data chain, we have the upstream interface in which data is collected 
and preprocessed to form the training dataset and the downstream interface in which 
the trained model generates predictions upon user requests. At data collection stage, 
an attacker can craft and provide malicious data points to compromise the ML model 
and its predictions. At model interaction stage, malicious requests can lead to leak the 
ML model and the training dataset. More precisely, in controlled access settings, the 
attacker will have to compromise the model through a distant API whereas in model 
sharing settings the attacker is free to access both the program containing the model 
and the API locally, thus making the prediction access control harder and raising new 
concerns like reverse engineering.

Figure 1. Actors involved in the data chain.
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Membership inference attacks aim to deduce if a given data point is present in the 
training dataset or not. The first membership attack against a ML system was realized 
by Shokri et al. (2017). They targeted black box models in a context of MLaaS and 
were able to differentiate member data points only by sending requests to the model. 
Salem et al. (2018) have built upon this work to relax assumptions and extend the 
attack scenario. Others have studied membership on Generative Adversarial Network 
(Hayes et al., 2019) and even on robust Deep learning techniques (Song et al., 2019).

Model inversion attack aims to reconstruct information about a data point present in the 
training dataset. This type of vulnerability was introduced by Fredrikson et al. (2014) 
and demonstrated for a ML system used for personalized warfarin dosing. They were 
able to show that an attacker possessing the ML model and demographic information 
about a patient would be able to infer their genetic markers. Until recently, attacks 
failed to inverse higher complexity model such as neural networks but Y. Zhang et al. 
(2020) presented a technique that uses a small amount of auxiliary knowledge against 
neural network in white-box settings.

Finally, model theft attack aims to gain knowledge about a black box or grey box model 
such as type of algorithm, hyper-parameters or trained model parameters. Tramer et al. 
(2016) shows that model parameters at risk in a context of MLaaS, even when attacker 
does not have knowledge about the training data set or model algorithm. They use 
equation-solving attack to extract highly accurate model with a little number of requests. 
In their work presented earlier for membership inference Shokri et al. (2017) actually 
use a shadow model (i.e., a model mimicking the target model behavior) as a step to 
mount their attack, essentially stealing a black-box version of the model.

Data poisoning attack enables an adversary to influence the predictive power of a 
model by injecting malicious data points into the training data set. For example, Chen 
et al. (2017) present a scenario in which a back door is installed on a deep learning 
authentication system. Recently, the particular case of sequentially generated data 
for continuous learning system has been studied by X. Zhang et al. (2019). Finally, 
adversarial learning is a class of attacks in which an attacker exploits a predictive system 
by finding an input that induces an abnormal behavior of the system. For example, 
Al-Dujaili et al. (2018) successfully crafted adversarial example on malware binaries 
that allowed them to evade detection systems. Papernot et al. (2017) showed that they 
can instantiate such an attack in black-box settings targeting MLaaS.

Figure 2. Attack vectors - (1) Upstream, (2) Downstream.
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Differential privacy is a designed privacy model to share information about a 
computation made on a dataset without compromising the privacy of each unique 
element. A possible implementation of differential privacy is through the addition of 
noise to the result to render unnoticeable the presence or absence of a particular profile 
in the data set. Differential privacy is a defense technique that is often used to counter 
membership inference and model inversion attacks. Since it can help generalizing the 
model, it can also be used to mitigate adversarial example and data poisoning attacks. 
Several attacks that we described take advantage of the accuracy of the predictions or 
use confidence levels shared along with the prediction. Controlling how the end user 
accesses the results of the predictive system (e.g., by removing confidence levels) can 
help mitigating attacks such as membership inference and model inversion. Finally, 
robust models are designed to be more resilient to data perturbation both at training 
and prediction stage, helping mitigate adversarial crafting of data both at training stage 
(data poisoning) and at prediction stage (adversarial example). Several techniques 
can be employed to increase model robustness such as robust statistics, which are a 
class of estimation techniques that can be used to minimize impact of high diversity 
in statistical data distribution (e.g. outliers or small subgroups). Adversarial training is 
another technique in which adversarial examples are purposefully crafted and inserted 
in the training dataset to increase robustness against adversarial examples.

In this paper, we have focused exclusively on threat vectors present at the data 
collection and the prediction interfaces. However, the security and privacy of ML 
systems security and privacy are also impacted by other concerns, which we briefly 
review in this section. In the data chain, in most cases the data collector (mostly the 
farmers) hand their data to data-processors. In addition, some of the data collected 
may be critical (e.g., genomics) and considered as business secret (e.g., production 
data). For this reason, the data collector might be reluctant to share its data which 
would break the first link of the data chain. In this scenario, homomorphic encryption 
is a cryptographic technique that could allow the data processor to train the ML 
system without the need for the data collector to divulge its valuable data, effectively 
maintaining our data chain functional. Data collectors have formulated concerns about 
the privacy of their data, and lack of cooperation between actors of the data chain have 
led to tensions within digital farming ecosystem. Doing our research, we have found 
multiple threat scenarios where the adversary is an insider to the digital farming context. 
Releasing tensions between actor would thus in itself help mitigate all ML induced risk 
to digital farming by lowering the likelihood of scenarios where the adversary is part 
of the data chain. A data trusts is a regulatory tool (a contract) designed to ensure 
that the management of a resource benefits each shareholder such as the resource 
provider (i.e. data-collector), resource processing agent (i.e. data-processor) and 
resource beneficiary (i.e. end-user).

As mentioned by organizational actors and looking at the context, it appears that 
security is a very concerning topic for digital farming that has been overlooked until 
now. We evaluated that ML was the left aside in terms of security and data privacy and 
dedicated our effort to help raise the attention as it is being used extensively. We have 
designed a Security model that helps framing the problem and investigated technical 
vulnerabilities and practical ways to mitigate them. During our study we also have found 
that related concern such as data ownership are directly impacting ML security and 
data privacy. Technical and regulatory tools such as homomorphic encryption and data 
trusts are available to help with these related concerns, effectively helping mitigating 
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ML induced risks. Agriculture has always been a technophile ecosystem and up to this 
day it has taken the most out of available technologies, leading to the digitalization of 
farming. We believe that digital farming sector should learn from other industries and 
take the opportunity to be ahead of the curve on security and data privacy concerns.
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RFID identification can be used for health and welfare monitoring if tagged animals are 
recorded at drinking and feeding places. In an experiment, RFID readings from 144 
fattening pigs (12 pens each with 12 pigs, one drinker and two feeders) were recorded 
with four readers (each with eight antennas) during almost four months. Tag readings 
were combined in visits and subsequently visits in meals. A model for the number of 
meals per pig per day was developed generating alerts when the number was less 
than expected. Most cases of culled pigs corresponded with alerts, but the sensitivity 
depended on the chosen setting. The related specificity was only high enough when 
a high threshold was chosen.

Keywords: RFID, pigs, eating behaviour, drinking behaviour, health and welfare 
monitoring.

Pig identification with RFID ear tags can be used in pig production to certify 
antibiotics‑free meat production, as is done by KDV (Sustainable Pork Value Chain, 
sustainable-pork.com). This RFID identification can also be used for health and welfare 
monitoring if tagged animals are recorded by readers at certain locations in the barn 
(Ruiz-Garcia and Lunadei, 2011, Maselyne et al., 2018). In a previous research a good 
correspondence between tag readings and animal behaviour was found in two cycles 
in a pen with 12 weaned pigs (de Mol et al., 2019). In the current research LF RFID 
readings in one cycle were available for 12 pens each with 12 fattening pigs. Recordings 
per animal can be used for individual monitoring of pigs. The goal of this experiment 
was the analysis of the individual patterns of the number of visits for monitoring by 
generating alerts when the number is deviating. These alerts are true in case of the 
culling or treatment of animals and false for healthy animals.

Twelve pens with fattening pigs were involved in this experiment at the Dutch Swine 
Innovation Centre (VIC Sterksel) in the Netherlands.The experimental period started 
at March 11 2020 and ended at July 1 2020, this is from the start till the end of the 
fattening period. Each pig was equipped with an LF RFID tag in the right ear. Each pen 
was equipped with one drinker and two (combined) feeders (Figure 1). Four readers, 
each with eight antennas were available to register the tag readings at each drinker 
and feeder (equipment provided by Agrident, agrident.com). For four drinkers and all 
24 feeders one specific antenna was available. Four antennas were applied for tag 
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readings from two drinkers in neighbouring pens. In this way it was possible to register 
the visits of all drinkers and feeders (n=36) with 32 antennas (connected to four readers).

One weighing platform (Thomas® Animal Weighing system, www.hotraco-agri.com) 
was installed at a passage that was created at the back end of two neighbouring pens 
(Figure 1). Weight recordings were available anonymously and an additional reader 
with two antennas was installed on this weighing platform to register tag readings. 
Reference weight recordings by weighing by hand were available once a month.

Recordings of climate data (temperature, relative humidity, CO2and NH3) were also 
available (equipment provided by Hotraco, www.hotraco-agri.com).

Video recordings at selected spots were available for validation. Treatments, cullings 
and other management data could be used for the analysis of the monitoring results.

Readings of the RFID tags were recorded continuously. The tag readings became 
available as one csv file per reader per day with on each line:an identification, a time 
stamp and an antenna number. The combination of reader and antenna number 
identified a drinker, feeder or weigher. Tag readings were combined to visits by applying 
a bout criterion of 20 seconds (Maselyne et al., 2016). Visits were combined to meals 
by applying a meal criterion of 900 seconds(Tolkamp and Kyriazakis, 1999).Data were 
stored in an Access database. A procedure for reading the csv files was made where 
the tag readings of the same pig and same location were combined in visits with the 
time stamp of the first reading as starting time, the time stamp of the last time stamp 
as ending time and the number of readings included as an additional characteristic of 
the visit. In another procedure visits were combined in meals. This processing resulted 
in three types of readings, visits and meals: 1 = drinking, 2 = eating and 3 = weighing 
(only possible in the combined pen). The number of visits and meals per pig per day 
was used to develop a model for monitoring the pigs.

Recorded visits were available per pig and per type. This is visualized in Figure 2 where 
the visits in one pen during a 6 hour period are shown. Tag readings were combined in 

Figure 1. Layout of the barn with 12 pens each with one drinker and two feeders; 
4 readers, each with 8 antennas; one weighing platform (with reader) connecting 
pens 5 and 7.

Results
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visits. Visits can be to the drinker, to one of the feeders or to the weigher (not relevant 
for Pen 2 depicted in Figure 2). In general periods with activity from all pigs in the pen 
alternate with periods of rest where general activity is low. Evening and night periods 
appeared to be quieter (but not without activity).

The average weight by hand of the pigs was 35 kg at March 26 and 123 kg at June 
17. Due to technical problems (mostly network problems) readings were missing for 
28% of the days (uptime less than 20 hours per day).This missing percentage varied 
between readers from 11% to 49%. The data from the other days were used to get an 
indication of the usability of RFID readings for monitoring. Visits at one feeder were 
mostly combined with visits at the other feeder, therefore visits at the two feeders were 
combined in the further analysis. In total almost 17 million tag readings were recorded 
(Table 1), resulting in almost 1,3 million visits (131 readings per visit) and 266 thousand 
meals (5 visits per meal).The number of tags was at the same level for all antennas, 
the number of visits was higher for the antennas serving two drinkers and the number 
of meals was twice as high for these antennas. These results indicate that one antenna 
can be used to register the relevant readings of two drinkers.

Visits and meals are a characteristic of the behaviour of a pig. So, monitoring of the 
pig’s behaviour can be based on monitoring the number of meals, the average interval 
between meals or the maximum interval between meals. Pigs with a decreased number 
of meals or with increased intervals should be alerted for inspection by the farmer. For 
these variables the daily level is predicted with a statistical model, e.g., for the number 
of meals given in Equation 1, where the number of meals today (d) is predicted by 
the number yesterday (d-1), the number on the day before yesterday (d-2) and the 
average number of the other animals in the same pen today.

NrMeals(d) = α1+ α2 NrMeals (d-1) + α3 NrMeals (d-2)+ α4 AvgNrMeals (d)	 (1)

Equation 1 was based on the analysis of the correlations of the number of meals with 
other variables that might be related. From this analysis it was concluded that it is not 
relevant to include climate variables in this equation. The values of the parameters 

Figure 2. Example of all visits in Pen 2 between 12:00 and 18:00 hr om March 11, 2020; each line represents 
visits of one pig: blue visits correspond with readings at drinking nipple, green and red visits correspond with 
reading at one of the feeding throughs.
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Table 1 Percentage of days with uptime less than 20 hours, number of readings, visits and meals per reader 
(reader 213 is on the weighing platform). 

 
 Reader 209 Reader 210 Reader 211 Reader 212 Reader 213 Total 
Days Uptime < 20 Hrs 49% 26% 24% 30% 11% 28% 
Readings 31675394 46228483 43866491 44780502 1660406 168211276 
Visits 227302 349709 327865 331887 43166 1279929 
Meals 39688 71770 68736 63989 22262 266445 
 
 
 
 
 



30

Monitoring fattening pig’s behaviour by RFID 

Proceedings ICAR Conference 2021, Leeuwarden

α1, α2, α3 and α4 might vary between pigs and might be time dependent. Therefore, 
a Kalman filter is used to fit these parameter values per pig on-line (de Mol et al., 
1999), resulting in updated parameter values per pig per day, together with a variance-
covariance matrix for these values that can be used to calculate confidence intervals. 
Alerts are generated when the difference between predicted and real level for a pig on 
a day is too big, that is when the error is outside a confidence interval. Several options 
were considered: a 95%, 99% or 99.9% confidence interval.

The alerts were analysed in two ways:

•	 Alerts are true in case of a recorded case of culling or treatment: each case is either 
true positive (TP) or false negative (FN), resulting in the sensitivity: TP/(TP+FN), 
the percentage of detected cases.

•	 Alerts outside culling or treatment periods are false: each day in then either true 
negative (TN) or false positive (FP), resulting in the specificity: TN/(TN+FP),the 
percentage of healthy days without alert.

An example of the monitoring process for one pig is depicted in Figure 3. For each day 
the expected value was calculated based on Equation 1 using the parameter values 
from the Kalman model. The outcomes of the Kalman model made it also possible to 
calculate the confidence interval and to give alerts when the real value is outside the 
confidence interval. Sensitivity and specificity results for all pigs are included in Table 
2 and Table 3.

It was difficult to calculate the sensitivity as there were only a few cases of culled or 
treated pigs, furthermore some cases were in a period were most data were missing(so 
insufficient input for model) and there was one case only a few days after the start of 
the experiment (limited time for the model to adapt). However, in most cases of culling 
alerts at various levels were generated in the period before culling. Results for the 
treatment cases were not included, as these were only a limited number (n=11), for a 
great part(n=5) in the period before the culling of a pig.

For sensitivity there is no clear difference between the results of different variables. 
This is different for specificity, it is lower in case of the average or maximum interval 
between meals compared with the number of meals. The specificity is high for the 

Figure 3. Example of monitoring per pig with results per day: blue solid line is number of meals, dotted 
cyan is average number for this pen, solid magenta line is fitted value (with dotted magenta line as 95% 
confidence interval) and alerts in top line when value is outside confidence interval (cyan for decreased 
values, magenta for increased; dot sign for 95%, plus sign for 99% and asterisk sign for 99.9% confidence 
interval).

Discussion

 

 
Figure 3. Example of monitoring per pig with results per day: blue solid line is number of meals, 
dotted cyan is average number for this pen, solid magenta line is fitted value (with dotted 
magenta line as 95% confidence interval) and alerts in top line when value is outside confidence 
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number of meals but might only be high enough for practical application in case of 
the 99.9% confidence interval. For practical application one should balance between 
wanted sensitivity and acceptable specificity.

Other variables should be studied as well, for example the visits per pig per day can be 
analysed in the same way. Other aspects that need further study are the influence of 
the group level on the individual pattern and the within-day pattern of the pig behaviour.

Two pens were different as they were connected by a weighing platform, the specific 
results also need further study: combining anonymous weights with RFID readings, 
differences in visiting patterns to the weighing platform compared with visits to the 
drinker and feeders.

Similar data are available from two other fattening round in the same pens, one in 
2019 and one later in 2020. Comparing the results of these rounds with the present 
results might strengthen the conclusions.

 

Table 2. Sensitivity results based on number of meals per day, average interval between meals and 
maximum interval between meals for five cases of culled pigs (* = outside 95%, ** = outside 99% and  
*** = outside 99.9% confidence interval).  

 
  Case 11 Case 2 Case 32 Case 42 Case 52 
Decreased number Type 1 (drinking) * ** * *** - 
of meals Type 2 (eating) ** *** * * ** 
 Type 3 (weighing) n/a ** ** n/a n/a 
Increased average Type 1 (drinking) *** *** - * *** 
interval between Type 2 (eating) - - - - *** 
meals Type 3 (weighing) n/a *** ** n/a n/a 
Increased maximum Type 1 (drinking) *** ** - ** *** 
interval between  Type 2 (eating) *** - ** - *** 
meals Type 3 (weighing) n/a *** *** n/a n/a 

1 Case in the beginning of experiment 
2 Missing data in culling period 
 
 
Table 3. Specificity results based on number of meals per day, average interval between 
meals and maximum interval between meals for all pig days outside treatment or culling 
periods. 

 
   Confidence interval 
  Valid days 95% 99% 99.9% 
Decreased number Type 1 (drinking) 9380 94.6% 98.4% 99.6% 
of meals Type 2 (eating) 9115 95.4% 98.8% 99.7% 
 Type 3 (weighing) 2245 94.7% 97.9% 99.5% 
Increased average Type 1 (drinking) 9293 90.9% 93.9% 96.1% 
interval between Type 2 (eating) 9040 90.2% 93.8% 96.2% 
meals Type 3 (weighing) 2051 91.6% 94.2% 95.8% 
Increased maximum Type 1 (drinking) 9293 89.7% 94.3% 97.1% 
interval between  Type 2 (eating) 9040 90.6% 94.5% 97.0% 
meals Type 3 (weighing) 2051 91.5% 94.7% 97.5% 
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We conclude that RFID readings can also be used for health and welfare monitoring 
in fattening pigs. Comparing the number of meals (or the average and maximum 
interval) per pig per day with the expected level results in alerts that can be useful is 
daily management. Sensitivity results were difficult to quantify, but alerts were given in 
most cases. Specificity was lower when results were based on average or maximum 
interval compared with average number of meals.

This project was funded by Top Sector Agri and Food (Netherlands) with KDV as 
coordinating private partner and Hotraco and Allflex Livestock Intelligence as supporting 
private partners.

de Mol, R.M., Keen, A., Kroeze, G.H., Achten, J.M.F.H., 1999. Description 
of a detection model for oestrus and diseases in dairy cattle based on time series 
analysis combined with a Kalman filter. Computers and Electronics in Agriculture, 22 
(2-3), 171-185.

de Mol, R.M., P.H. Hogewerf, R.G.J.A. Verheijen, N.C.P.M.M. Dirx 
and J.B. van der Fels, 2019. Monitoring pig behaviour by RFID registrations. 
In: Precision Livestock Farming 2019 - Papers Presented at the 9th European 
Conference on Precision Livestock Farming, ECPLF 2019, p 315-321.

Maselyne, J., W. Saeys, P. Briene, K. Mertens, J. Vangeyte, B. De 
Ketelaere, E. F. Hessel, B. Sonck, and A. Van Nuffel, 2016. Methods to construct 
feeding visits from RFID registrations of growing-finishing pigs at the feed trough. 
Computers and Electronics in Agriculture 128: 9-19.

Maselyne, J., A. Van Nuffel, P. Briene, J. Vangeyte, B. De Ketelaere, S. 
Millet, J. Van den Hof, D. Maes, and W. Saeys, 2018. Online warning systems 
for individual fattening pigs based on their feeding pattern. Biosystems Engineering 
173: 143-156.

Ruiz-Garcia, L. and L. Lunadei, 2011. The role of RFID in agriculture: 
Applications, limitations and challenges. Computers and Electronics in Agriculture 
79(1): 42-50.

Tolkamp, B. J. and I. Kyriazakis, 1999. To split behaviour into bouts, log-
transform the intervals. Animal Behaviour 57(4): 807-817.

Conclusions

List of references

Acknowledgements



33

ICAR Technical Series no. 25

Atypical spectra screening: applications for monitoring 
infrared instruments and model predictions

L. Spieß

Qlip B.V., P.O. Box 119, 7200 AC Zutphen, The Netherlands 
Corresponding Author: spiess@qlip.nl

Fourier-Transformmid-InfraRed (FT-IR) spectrometry is a recognized and widely 
used method to determine the compositional quality of raw milk and other liquid milk 
products. In recent years, mathematical models were developed that are capable of 
detecting atypical milk samples. Here we show how atypical spectra screening can 
also be used to monitor variations in the spectra that are related to the instrument 
performance rather than to the characteristics of the milk. By studying the temporal 
dynamics of spectra anomaly scores, it is possible to detect measurement instabilities 
caused by changes in the measurement context (i.e., instabilities of FT-IR instruments). 
We also show how algorithms can be developed to detect episodes of measurement 
instabilities automatically and in real-time.Such information can provide insights in the 
maintenance status of infrared instruments and changes in the measurement context. 
This, in turn, is important to ensure a consistent quality of infrared measurements and 
chemical profiling of milk samples.

Key words: Milk, Infrared spectrometry, atypical spectra screening.

Fourier-transform mid infrared spectrometry (FT-IR) is a recognized and widely used 
method to rapidly determine the compositional quality of raw milk and other liquid 
milk products. This is done by generating spectra based on the absorption of light at 
different frequencies that result from different chemical bonds present in the milk. On the 
basis of these spectra, mathematical prediction models can predict (i.e., calculate) the 
concentration of fat, protein, lactose, and many other parameters. For proper predictions 
in routine operation, the accuracy has to be continuously monitored. If needed, slope/
intercept settings can be adjusted based on analysis of calibration sample sets with 
chemical reference values. 

In the recent years, FT-IR spectrometry has gained increasing nterest for its potential 
to predic tindividual fatty acids or groups of fatty acids (Fleming et al., 2017), minerals 
(Stocco, Cipolat-Gotet, Bonfatti, Schiavon, Bittante and Cecchinato, 2016), green 
house gas emissions (Vanlierdeet al., 2016), energy status of the cow (McParland 
et al., 2012), pasture (Coppa et al., 2020)dry matter intake (Dórea, Rosa, Weld and 
Armentano, 2018), adulteration of milk (Hansen and Holroyd, 2019), and others. These 
parameters are of interest not only to individual farmers for monitoring and improving 
herd management practices, but also to feed advisors, veterinarians, dairy processors 
and researchers. Due to the economic impact, quality control procedures need to secure 
that the predictions are valid. However, with more and more parameters that need to 
be monitored, the costs associated with chemical reference analyses of control milk 
samples become increasingly uneconomic. Moreover, for parameters such as pasture 
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intake or gas emissions, chemical reference analyses that can be applied to the milk 
do not exist. As a consequence, a different and more general approach to monitor the 
validity of such predictions is required. 

Since FT-IR predictions are eventually based on the information present in the spectra, 
the spectra need to be of good quality. Importantly, acquiring spectra from milk samples 
is, in fact, a measurement process that takes place under certain conditions (e.g., 
ambient temperature, physical sample characteristics) and by using a particular FT-IR 
instrument that is subject to wearing and measurement instabilities. Instabilities at the 
level of individual FT-IR instruments can manifest gradually (e.g., built up of a film inside 
the cuvette) or abrupt (e.g., suboptimal functioning of the homogenizer) and can occur 
over long (e.g., dissolving or wear of the cuvette) or short time scales (e.g., temporary 
issues with a moving mirror inside the cell). In principle, all these factors can lead to 
systematic changes in the obtained spectra. If this occurs at spectral bands containing 
information used by prediction models it can lead to erroneous or invalid predictions.

Monitoring routinely analyzed FT-IR spectra for systematic temporal deviations can 
therefore give valuable information about the validity of the predictions calculated from 
these spectra and, potentially, the functioning of the instrument. In the present paper 
we show how untargeted methods originally used to screen spectra for adulterated 
milk (e.g., Hansen and Holroyd, 2019) can be slightly modified to screen for systematic 
temporal deviations in routinely analyzed milk spectra. In short, this approach is based 
on establishing an FT-IR milk fingerprint that is unique to each FT-IR instrument and by 
tracking, over time, how individual milk spectra deviate from this fingerprint. Because 
the focus is on systematic deviations at the level of spectra rather than predictions 
calculated from them, the approach is more general compared to the use of pilot milk 
samples. Moreover, no cost and labor-expensive chemical reference analyses and 
pilot milk samples are required.

The data set contained 345473 spectra that correspond to Dutch bovine herd bulk 
milk samples randomly collected between January 2018 and November 2020. All milk 
samples were routinely analyzed for milk payment. For acquisition of the spectra, milk 
samples were randomly assigned to one of four FT-IR instruments (Milkoscan FT+, 
FOSS Analytical A/S, Hillerød, Denmark) where they all underwent the same pre-
treatment before the scan took place. FT-IR spectra were obtained in the mid infrared 
region with wavelengths between 10.8 µm (926 cm-1) and 1.995 µm (5012 cm-1). AllFT-
IR instruments were standardized monthly using the FOSS equalizer application in 
accordance with the manufacturer’s instructions (Winning, 2015).

For the development of a mathematical model to identify non-specific deviations in 
milk spectra, we followed a conceptually similar approach as described by (Hansen 
and Holroyd, 2019) and employed by manufacturers of FT-IR instruments (FOSS, 
2014). For each of the four FT-IR instruments in the Qlip payment testing laboratory 
a separate model was developed on the basis of ca. 85000 spectra. Preprocessing 
of the spectra consisted of selecting wavenumbers between 925 cm-1 and 1550 cm-

1, 1710 cm-1 and 1900 cm-1, and between 2700 cm-1 and 2971 cm-1. Moreover, the 
spectra from each instrument were standardized to have, per wavelength, zero-mean 
absorption with unit-variance. We then used a principal component analysis (PCA) with 
ten components to project the spectra to the latent space. After transforming the spectra 
to the latent space, we computed the covariance matrix and calculated per spectrum 
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the Mahalanobis distance. In the next step, we used the PCA to perform an inverse 
transformation on the spectra in the latent space in order to obtain the reconstructed 
spectra in the original space. By calculating, across all wavelengths, the root-mean-
square error between the original and reconstructed spectra, we obtained the spectral 
residuals. In the last step, the Mahalanobis distances and the spectral residuals were 
each standardized to have zero mean with unit variance before they were summed to 
a single score per spectrum: the spectrum anomaly score. The higher the spectrum 
anomaly score, the more a spectrum deviates from all the spectra that were used to 
develop the screening model. 

The use of untargeted spectra screening for identifying instrument instabilities is 
grounded on two critical assumptions. First, instrument instabilities need to be events 
that have a duration such that a sufficient number of spectra is influenced. Instabilities 
affecting individual spectra entirely incidental and temporally unpredictable will not be 
detected. Second, the chemical composition of the milk samples has to be independent 
of the time at which the spectra are obtained. That is, milk samples from different groups 
(e.g. cow milk and goat milk) should not be analyzed in discrete groups. Only under 
these conditions it is possible to identify and relate systematic deviations in spectra to 
instabilities during their acquisition. The detection of systematic deviations in IR spectra 
therefore comes down to detecting deviations in the time course of anomaly scores 
at the level of individual instruments over a pre-defined time window. As can be seen 
in Figure 1, such systematic changes in the anomaly scores can present themselves 
as drifts (upper panel) or sudden jumps (lower panel) and can even impact routinely 
predicted milk compositional parameters such as urea and free fatty acids in the milk 
obtained from commercial prediction models installed on the respective instruments. 

By visually inspecting for each instrument the anomaly scores on a daily basis over 
a period of three years, we identified 48 events with comparable instabilities. Of 
these, seven events were related to instrument A, sixteen to instrument B, eleven to 
instrument C, and fourteen to instrument D. For an actual implementation of such a 
tool in routine FT-IR analysis of milk samples, it is desirable to detect such incidences 
in real-time and as early as possible. To do so, we fed the anomaly scores of one 
day, one after another, to a Bayesian online change point detection algorithm (Adams 
and MacKay, 2017). The algorithm uses Bayesian inference to compute a distribution 
over the next unseen anomaly score in a time series, given only the anomaly scores 
it has seen before. It then computes for each individual anomaly score the probability 
that it reflects a change point on the basis of the past k anomaly scores. We found 
that k = 24 successive anomaly scores were sufficient to reveal most of the previously 
identified instrument instabilities. In other words, systematic changes in the anomaly 
scores could be detected with a latency of 24 measured spectra. The resolution at 
which a change point can be detected is at the level of an individual spectrum (see 
Figure 1 for examples).

So far, we focused on analyzing systematic deviations in anomaly scores on a spectrum-
by-spectrum basis. However, instrument instabilities or drifts can also manifest over 
longer time scales. Figure 2 illustrates for each of the four instruments the change in 
anomaly scores over a period of three years. We also applied the Bayesian online 
change point algorithm to these time series. This time, however, we computed the 
average anomaly score over a time window of two consecutive days and computed 
the probability of each possible change point using the last three two-day-averages. 
This means that systematic changes in the anomaly scores could be detected with a 
latency of six days and a resolution of two days. As can be seen in Figure 2, most of 
the major peaks were readily identified by the algorithms.

Identification 
and analysis of 
systematic deviations 
in IR spectra
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Figure 1. Examples of measurement instabilities that manifest as gradual (upper panel) or sudden (lower panel) 
temporal changes in the spectra anomaly scores over a day. Each blue dot corresponds to the spectrum anomaly 
score of an individual milk sample measured on that instrument. The orange and red lines depict LOWESS curves 
fitted to the uncorrected predictions for urea and free fatty acids in the milk, respectively. The vertical black bars 
reflect the moment in time where the Bayesian change point algorithm detected an unpredictable change in the 
anomaly scores. Note, how the change in the anomaly scores coincides with systematic biases in the predictions 
of urea and free fatty acids.
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Interestingly, the anomaly scores for instrument D appear to change drastically from 
early 2020 onwards. Around the same time, our colleagues began to notice increased 
fluctuations in the predictions of urea and free fatty acids on our pilot milk samples. 
These problems persisted until end of March 2020, when the cuvette was eventually 
replaced. Aside from abrupt and temporary fluctuations in the anomaly scores, all four 
instruments reveal a trend towards higher anomaly scores as time passes by. This can 
be a consequence of dissolving or wear of the cuvette or the built-up of a film inside of it. 

For the majority of the instabilities that we discovered, it was not possible to relate it to 
documented maintenance work or other disturbances reported around that time. This 
is not surprising given that none of these events was detected or issued by the quality 
control sensors present in FT-IR instrument. Nonetheless, we can use the spectra to 
get a basic understanding about how systematic the effects of such instabilities are 
and whether certain types of instabilities reappear. To do so, we created a dataset 
with all milk spectra that were measured during the 48 episodes with instabilities. This 
amounts to ca. 20000 individual milk spectra. We then used a combination of PCA 
and t-distributed stochastic neighbor embedding to visualize possible patterns in the 
residuals. As can be seen in Figure 3, on a macro level, the four different instruments 
are well separated from each other. This emphasizes the need for the development of 
separate models per instrument. At the micro level, it can be seen that the number of 
distinct clusters (n = 23) is about half the number of identified incidences with instrument 
instabilities (n = 48). On the one hand, this can be an indication that we identified 23 
distinct and unique categories of instrument instabilities. On the other hand, some 
of the clusters, particularly the small ones, only contain spectra from a single day. 
Because seasonal variations are not explicitly modelled in the untargeted screening 
model, they cannot be removed from the spectral residuals. This means that the same 
type of instrument instability that occurs during one day in the winter and one day in 
the summer can lead to distinct clusters. Nevertheless, some clusters contain spectra 
obtained during instrument instabilities that occurred on more than a single day. This 
suggests that certain instrument instabilities reappear. 

Figure 2. Long-term average of anomaly scores for each of four instruments from 2018 to 
2020. The blue lines reflect the average anomaly score. The red spikes reflect the moment 
in time where the Bayesian change point algorithm identified an unpredicted change in the 
average anomaly score. The height of the spike corresponds to the probability or confidence 
that a change point has been detected. 
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In the present paper, we demonstrated how untargeted models, originally developed 
to screen for adulterated liquid milk samples, can also be used to screen IRspectra 
for instrument instabilities. Our approach is based on the development of an FT-IR 
milk fingerprint that is unique to each instrument. When combined with change point 
algorithms, we have shown how instrument instabilities can be identified automatically 
and in real-time without requiring pilot milk samples. The spectral regions that our finger 
prints are based on contain chemically relevant information used by various prediction 
models. Instrument-related artifacts in these spectral regions can and occasionally did 
lead to biased predictions. Moreover, in the case of frequent short-term instabilities (in 
the range of minutes to hours) or strong drifts in the long-term (in range of months to 
years), additional maintenance measures could be considered.

In our admittedly small investigation, we have shown that instrument instabilities can 
be strong enough to bias predictions from commercial models of urea and free fatty 
acids in the milk. It should be noted, however, that instrument instabilities do not 
always have to affect model predictions and are certainly not the only factor affecting 
these predictions. Moreover, predictions of the chemical components such as fat, 
protein, and lactose are probably less susceptible to spectral deviations than models 
predicting parameters that are not directly present in the milk itself (e.g., fatty acids 
in the blood, pasture intake, or gas emissions). This is particularly problematic when 
these parameters are weakly correlated with the milk spectrum. In this case, prediction 
models are often more susceptible to spectral noise in general. It should also be noted 
that we could not relate the identified instrument instabilities to a particular cause. This 
is not surprising given that these instabilities were not detected or reported by the quality 
control sensors implemented in the instrument. Interestingly, the majority of temporary 
instabilities disappeared without human intervention. While individual episodes of 
instability may not always signal a need for maintenance, a change in the frequency 

Figure 3. Clustering of milk spectra collected during episodes of 
instrument instabilities (n = 48). Each dot reflects an individual 
milk spectrum positioned on the two dimensions of a t-distributed 
stochastic neighbor embedding. The colors correspond to the 
different instruments. 

Discussion
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of such episodes, however, deserves attention. Finally, it should be kept in mind that 
systematic changes in the spectra can be due to any change in the measurement 
conditions. These do not always have to be restricted to the FT-IR instrument but can 
also be due to changes in ambient temperature, humidity, sample pre-treatment, and 
even the physical properties of the milk sample itself. 

When it comes to a practical application of our approach, the specific implementation 
may differ depending on the use case. When used as a quality control tool for monitoring 
model predictions, the change points in combination with the anomaly scores can be 
used to indicate whether an individual spectrum falls within an episode of instability or 
not. If it does fall in an episode of instability, one can compute the mean of the predictions 
before, during, and after the episode and compare them for statistical differences. When 
used as an additional quality control tool for instrument functioning, the detection of 
a change point in the anomaly scores can be used as a signal to have the respective 
instrument checked by the operator and, if needed, flagged for maintenance or repair.
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Negative energy balance during the transition period predisposes dairy cattle to 
numerous metabolic conditions. Fourier-transform infrared spectroscopy (FTIR) 
presents one potential data source for estimating metabolic parameters used for the 
detection of cows suffering from these disorders. We created prediction models for 
blood BHB and blood NEFA using milk FTIR and production information from 622 
milk samples subjected to FTIR measurements. The resulting R2 for prediction of 
blood BHB was 0.5627 ± 0.2610(SD) and R2 for blood NEFA prediction was 0.5093 
± 0.2473(SD). Balanced accuracies for detection of blood BHB greater than or equal 
to 1.2 mmol/L and for blood NEFA greater than or equal to 0.7 mmol/L were 83% and 
73% respectively. Additionally, we predicted metabolic disorders in cows by applying 
the predicted blood BHB, predicted blood NEFA, and milk fat to protein quotient to an 
external dataset. 

Keywords: Prediction modeling, metabolic disorders.

Negative energy balance (NEB) following parturition predisposes dairy cattle 
to numerous metabolic disorders. While many detection methods for metabolic 
disorders exist, they suffer from poor accuracy, high costs, or intensive labor 
requirements. Fourier-Transform Infrared spectroscopy (FTIR) of milk may improve 
both understanding and detection of metabolic disorders, including those not detected 
by hyperketonemia alone. This prediction tool has the potential to allow for accurate 
prediction of biomarkers associated with negative energy balance, beta‑hydroxybutyrate 
(BHB), and non-esterified fatty acids (NEFA), using a routine milk sample. The ability 
to predict multiple biomarkers from a single sample would allow better characterization 
of metabolic disorders in dairy cows.

Not all dairy cows experiencing adverse negative energy balance have elevated blood 
BHBA, the most common on-farm metric for evaluation. Ospina et al., 2013 reported 
that blood NEFA and blood BHB are not well correlated when measured on the same 
day. These affected cows are at risk of remaining undetected in an exclusively blood 
BHB focused testing strategy.
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We used FTIR, milk production data, and ElasticNet regression to create prediction 
models for both blood BHB and blood NEFA. Using a combination of these we predicted 
the metabolic status of cows <60 DIM for an external dataset.

Nine German dairy farms contributed data from December 2014 to December 2016 for 
this study. Farms visits occurred as often as once weekly and at least once monthly. 
Cows were dried off seven weeks before the expected calving date. Days in milk 
(DIM) targeted for sampling were between 0 and 60 days. Milk samples were taken 
between 8:00-10:00 AM using proportional milk samplers. A 10ml aliquot of milk was 
sampled and preserved using 1-2ml of bronopol (2-Bromo-2-nitropropane1,3-diol). 
Samples were transported at 4°C to regional milk testing facilities within one day of 
collection and analyzed using a MilkoScan FT-6000 (FossAnalytical A/S, Hillerød, 
Denmark). Milk FTIR absorbance variables were recorded for 1,060 wavenumbers.

A total of 622 observations from 478 cows had blood BHBA, blood NEFA, and milk 
FTIR samples collected. Blood samples were obtained following milking from randomly 
selected cows including milk samples from the same day. 

All statistical analyses were performed using R software version 3.6.3 (R Core 
Team (2020).). FTIR wavenumber variables were removed if greater than 15% of 
observations were missing values for a specific wavenumber. Wavenumber variables 
for values 900 –1,060 were removed as these 237 observations did not have these 
values recorded in the dataset. Following the removal of all observations with a missing 
value (n=134), the dataset contained 622 observations of 910 variables.

The IR spectra were transformed using the second derivative. The transformed 
spectra were reduced to 212 wavelength variables known to be informative (Grelet 
et al., 2016). Model input was DIM, lactation group, milk production, and the 212 
wavenumbers. Blood BHBA and blood NEFA were log-transformed after visualization 
using a histogram.

The ElasticNet (ENET) is a regression method that combines ridge regression and 
lasso regression to apply regularization aimed at shrinking model coefficients and to 
reduce coefficient variance (Hoerl and Kennard, 1970; James et al., 2013; Tibshirani, 
1996). ENET is fit to the data using two parameters λ and α, and 7-fold cross-validation. 

ENET in a logistic regression setting was also used to predict the binary outcome for 
above or below blood BHB and blood NEFA threshold values. The threshold value 
for elevated blood BHB was set at > 1.2 mmol/L and > 0.7 mmol/L for blood NEFA. 
In addition to the preprocessing described above, training data were balanced using 
Synthetic Minority Oversampling. The fitting of the ElasticNet classification model 
followed the same procedure as for the regression models.
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Results and 
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Descriptive statistics

ENET for prediction 
of blood BHB and 
blood NEFA

External validation 
and metabolic 
disorder prediction

We evaluated our ENET regression models using an external dataset. The RMSE of 
predictions and Pearson’s correlation coefficients between predicted and observed 
values were calculated. In addition to the prediction of metabolites independently, 
we predicted the overall metabolic status of the cow associated with the respective 
samples as either ‘healthy’ or risk for ‘metabolic disorder’. Cows were identified as 
metabolically disordered if predicted blood BHB was greater than or equal to1.2 mmol/L, 
blood NEFA greater than or equal to 0.7 mmol/L, or fat-protein-quotient (FPQ) greater 
than or equal to 1.4. Predicted metabolic status was then compared to true metabolic 
status as determined by measured blood BHB and blood NEFA resulting in a confusion 
matrix from which diagnostic test parameters were derived.

Cows were sampled from 1 to 3 times. The median number of samples per farm was 
55 (range: 2-180). A total of 152 cows were in their first lactation and 470 cows were 
in their second or greater lactation (median=3, range 1-10). A total of 563 Holstein and 
59 Flekvieh samples were collected. 

Cross-validated R2 values for blood BHB 0.5627 ± 0.2610(SD) and RMSE of 
0.3873 + 0.1380(SD). The blood BHB classification had a balanced accuracy of 87% 
(80% – 91%), sensitivity of 90% (81% – 96%) and a specificity of 83% (80% – 86%). 
PPV and NPV were 43% (35% - 51%) and 98% (97% - 98%) respectively. Blood NEFA 
prediction RMSE was 0.4825 + 0.9260(SD) and R2 was 0.5093 + 0.2473(SD). The 
balanced accuracy of blood NEFA predictions was 73% (68% – 79). These results are 
comparable to recent publications by Pralle et al., 2018, who reported sensitivities of 
76 to 81% and specificities of 71% to 81% for prediction of blood BHB levels greater 
than 1.2 mmol/L. The blood NEFA prediction results are similar to Luke et al., 2019 
and Tremblay et al., 2019 who reported a sensitivity of 73%, and 77% respectively. 
These results show ENET is a good modeling algorithm for the prediction of blood 
BHB and blood NEFA.

Validation of our ENET predictive model was performed using the Qcheck dataset 
with n=9660 observations to account for any overfitting bias. The resulting RMSE was 
0.4018 (95% CI 0.3958 - 0.4082) for log-transformed blood BHB and 0.4043 (95% CI 
0.3937 - 0.4159) for log-transformed blood NEFA prediction. Figures 1 and 2 display 
observed values compared to predicted values. 

True observed blood BHB and true blood NEFA had a Pearson’s correlation coefficient 
of 0.31 (P>0.001) while predicted blood BHB and predicted blood NEFA had a 
correlation coefficient of 0.69 (P>0.001). This increased correlation between predicted 
values of NEFA and BHB may be due to our dataset size. 

Prediction accuracy for metabolic disorder classification using predicted blood BHB, 
predicted blood NEFA, and milk FPQ was 94% (9081 /9660). Sensitivity was 94% 
(3354 / 3542) and specificity was 94% (5727 / 6118). By using a combination of blood 
BHB, blood NEFA, and FPQ, this model enables the identification of cows suffering 
from hyperketonemia in addition to those with normal blood BHB levels suffering from 
the consequences of negative energy balance. By identifying these at-risk cows, we 
can direct necessary medical care to them before they lose massive amounts of body 
weight and develop more severe conditions resulting in death. 

External validation 
and metabolic 
disorder prediction 
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Figure 1. Observed versus predicted values of blood BHB for ElasticNet regression 
(n=9,660) using milk Fourier-transformed infrared spectroscopy and production 
variables (milk yield, DIM, lactation group). 

Figure 2. Observed versus predicted values of blood NEFA for ElasticNet regression 
(n=9,660) using milk Fourier-transformed infrared spectroscopy and production 
variables (milk yield, DIM, lactation group). 

Conclusion

 
 
 
 

 
 

 
 
 

Metabolic disorders during the transition period remain a primary issue of concern for 
dairy cows. Milk FTIR measurement is one source of data for the detection of cows 
suffering from metabolic disorders with the benefits of obtaining multiple biomarkers 
from a single milk sample. Prediction of metabolic disorders using FTIR data can be 
accomplished by combining the predictions into a categorization into cows with and 
without metabolic disorders. This categorization results in rapid identification of these 
high-risk cows post-calving. Continued research into prediction modeling with regards 
to methods and input is warranted.
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This study is sought to provide an overview on the implementation of the new certified 
reference material for somatic cell counting in milk, which was launched in 2020. 

Milk somatic cell count (SCC) is a widely used indicator for monitoring the udder health 
of several mammalian species and is relevant in food quality regulations, milk payment 
testing, farm management and breeding programmes. Joint efforts of International 
Dairy Federation (IDF), the International Committee for Animal Recording (ICAR) and 
EC JRC resulted in the development and release of a new certified reference material. 
The availability of this new material allows better global equivalence in somatic cell 
counting in milk, which is a challenge today.

The newly available reference material has been tested in numerous countries 
around the globe. In some cases, an adjustment/re-anchoring of current SCC level 
would not be necessary, whereas it would be in others. Examples for both scenarios 
including evaluation of the impact of the transition on the results will be demonstrated. 
Suggestions for handling of possible transition issues in case of re-anchoring the 
current SCC level will be discussed. Further details and examples will be given on 
other possible applications of the certified reference material such as verification/
adjustment of calibration settings of routine methods, assigning reference values to 
secondary reference materials, and usage in proficiency tests. 

In conclusion, seeking global equivalence in somatic cell counting first countries already 
re-anchored their SCC level with more countries/laboratories to follow. These real-
life examples are highly valuable to further promote the usage of the new reference 
material and help to establish procedures for its application. 

Keywords: SCC, reference material, equivalence

Somatic cell count (SCC) in milk is a widely used analysis and the number of tests done 
worldwide is estimated to be >500.000.000 per year. SCC test results from individual 
cow milk samples are used for udder health monitoring and management and breeding 
purposes. Beyond that, SCC result from bulk tank milk samples are relevant in food 
quality regulations and milk payment. A challenge in the industry is different SCC 
levels around the world as can be seen based on, for example, ICAR Proficiency Test 
results. These differences, in turn, lead to challenges in terms of trading dairy products. 

Abstract

Introduction
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A joint project team of experts from the International Dairy Federation (IDF) and ICAR 
together with the European Commission Joint Research Centre have developed a 
new certified reference material for somatic cell counting. The official name of the 
material is “EC JRC CRM® ERM-BD001“ and it can be ordered here: https://crm.jrc.
ec.europa.eu/p/ERM-BD001 

The material consists of two samples. One sample has a low SCC of about 50,000 
cells/mL and the second one has a high SCC of about 1,000,000 cells/mL (Figure 
1). The samples are produced based on bulk tank cow milk. Milk cells are preserved 
through spray drying and samples are afterwards homogenized, bottled, and labelled. 

The two samples are produced from raw bulk cow’s milk which has been powdered by 
spray drying at NIZO in the Netherlands. The homogenization of the samples, bottling 
and labelling was performed by the Joint Research Centre in Belgium.

The primary reference material for somatic cell counting can be applied in different 
ways in laboratories. When reference and/or routine methods are operational at your 
laboratory the primary reference material can be used to check the performance of 
the methods. This way the correctness of the two methods can be verified and when 
necessary adjusted. 

Another way to apply the primary reference material could be to check on the calibration 
settings of the routine methods. When the routine method is calibrated with the primary 
reference material, the obtained results will be traceable to the reference results. 

New certified 
reference material 
for Somatic Cell 
Counting 

Figure 1. Somatic cell count levels of the two samples included in the EC JRC CRM 
ERM-BD001 as illustrated on the Certificate of Analysis.

Application of 
the new primary 
reference material
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Another application of the primary reference material is to assign values to secondary 
reference materials. In practice, the routine instruments for somatic cell counting 
are often calibrated by using secondary reference materials produces by difference 
providers. When the values assigned to these secondary reference materials are based 
on primary reference material, the alignment of the results, consecutively obtained with 
the routine methods in different laboratories will be ensured. 

Last, the primary reference can be used in a proficiency test, where the results obtained 
at the same time from different laboratories and with difference methods are compared. 
Including the primary reference materials in proficiency testing schemes allows for a 
proper comparison of the methods and the laboratories performance. 

A webinar entitled “Development and application of a certified reference material for 
somatic cell counting in milk” to introduce the reference material and elaborate on its 
application was conducted in December 2020. A recorded version of the full webinar 
and pdf-copies of the presentations are available here: https://www.icar.org/index.
php/technical-bodies/sub-committees/milk-analysis-sub-committee-landing-page/
webinar-3-december-2020-on-development-and-application-of-a-certified-reference-
material-for-somatic-cell-counting-in-milk/

The new reference material including examples on its application are also described 
in detail in the recently published IDF Bulletin 508/2021, which is available for free 
download here: https://store.fil-idf.org/product/bulletin-of-the-idf-n-508-2021-guidance-
on-application-of-ec-jrc-certified-reference-material-for-somatic-cell-counting-in-milk/ 

We conducted a small survey to learn more about the actual status on the implementation 
of the new SCC certified reference material and observed that different countries are 
mainly in four different phases of the implementation:

1.	 Material tested and adopted - in Lithuania and Switzerland. 

2.	 Material not tested so far – In countries such as China and Chile the new material 
has not yet been tested so far. Among other reasons, the shipment of the SCC 
reference material was not possible due to COVID 19 restrictions.

3.	 Material tested, no need for adjustment of SCC level – The new primary SCC 
reference material has been tested and it was observed that the current SCC level 
and the SCC level of the primary reference material are well in alignment. Thus, it 
was concluded that no adjustment of SCC counting levels is needed. Nevertheless, 
the new primary SCC material is considered a valuable product because it opens 
up the possibility to monitor SCC counting levels on a regular basis (e.g. once every 
quarter) and verify correctness. This situation applies to many countries around the 
world, e.g. Denmark, Germany, Italy, Japan, New Zealand, UK, USA. A dialogue 
on using the new primary SCC reference material as an official and mandatory 
material has been initiated with the respective authorities in Japan and USA. Below 
a case report for this implementation phase coming from Germany.

4. 	Material tested, need for adjustment of SCC level – The test of the new primary SCC 
reference material revealed that the current SCC level requires some adjustment. 
Following this finding, the respective laboratories started to initiate the dialogue 
with their stakeholders and agreed upon a strategy for transition of SCC levels. 
Regular application of the new SCC reference material is seen as highly valuable in 
the transition period and thereafter. This situation applies to, e.g. Canada, France, 
Israel, and the Netherlands and is further described in below case report from the 
Netherlands. 

Status on 
implementation of 
the new certified 
reference material 
around the world
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It is common practise in most milk testing laboratories around the globe to work with 
secondary SCC reference material. In this context, we would like to recommend that 
secondary SCC reference materials are to be checked for alignment with the new 
primary reference material and that customers of secondary reference materials ask 
their providers for such alignment checks.

Equivalence in SCC levels around the world has been a challenge for many years. A 
joint IDF/ICAR project team developed and launched a new primary reference material 
for somatic cell counting. The application of this material can help to obtain global 
equivalence in somatic cell counting. 

Conclusions
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Resilient dairy cows can be characterized by completing multiple lactations, with good 
(re)productive performances, facing no or few health problems that they overcome 
easily, and that are efficient and consistent in milk production. Improving resilience 
has clear advantages, but phenotypic information on this trait is lacking. We explored 
whether we can fill this gap with information from sensor technologies as these offer 
high-frequency, continuous, and longitudinal data of individual cows. We did this in 
three studies: the first study developed cow-specific resilience proxies using milk yield 
sensors, and correlating these proxies to national data to study herd factors impacting 
resilience. The natural logarithm transformed variance (LnVAR) in daily milk yield 
appeared an interesting cow-individual resilience proxy: a low LnVAR was genetically 
correlated to better udder and hoof health, better longevity and fertility, a higher body 
condition score, and lower ketosis and milk yield. A low LnVar, thus, represents a cow 
with a good resilience. Subsequently, herd-year effects for LnVar were estimated and 
correlated with herd performance parameters derived from the national milk recording 
system. This revealed large differences in resilience between herd-years: the LnVar 
in the herd-year with the largest effect was >6 times larger than the LnVar in the 
herd‑year with the smallest effect. The positive correlation with the proportion of cows 
with a rumen acidosis indication (r = 0.31) suggested that feed management may 
have an important effect on resilience. The second study used sensor data collected 
during the first lactation to predict a lifetime resilience score using logistic regression 
or random forest. Both methods had a similar classification performance (accuracy 
45-50%). However, random forest required much less data pre-processing to get to 
this performance. This makes random forest an attractive method to derive information 
from sensor data, particularly when input becomes even more complex with new 
sensor technologies entering the market. One of these new technologies could be 
camera-mounted drones, which were explored in the third study. These drones were 
used during several field trials, and artificial intelligence was used to detect, locate and 
identify cows, and obtain specific cow characteristics (height, volume, weight) from 
the images. Accuracies of >95% for detecting cows, ~91% for identifying cows, and 
~88% for obtaining cow characteristics (lying, standing or grazing) were achieved. This 
makes camera-mounted drones a promising new technology in monitoring traits that 
can be used for resilience assessment. 

Keywords: Resilience, proxies, prediction, sensor technologies.
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Resilience is the ability of animals to be minimally affected by environmental 
disturbances, or to quickly recover from them (Colditz et al., 2016). In that perspective, 
resilient dairy cows can be characterized by completing multiple lactations, with good 
(re)productive performances, facing no or few health problems that they overcome 
easily, and that are efficient and consistent in milk production (Adriaens et al., 2020). 
Improving resilience has clear advantages, e.g., improved animal health and welfare 
(Mulder and Rashidi, 2017) and reduced antibiotic usage (König and May, 2019). 
Despite the importance of resilience is clear in itself, breeding or managing for resilience 
is hampered due to the complexity of the trait and the lack of phenotypic information.

During the past decade, there are fast developments in sensor technologies that are 
increasingly being adopted on farms. These technologies primarily aim at monitoring 
specific traits (e.g., milk production), or at facilitating management-by-exception by 
detecting specific events that require farmer attention, e.g., heat or clinical mastitis. 
These sensors generate high-frequency, longitudinal and continuous time-series of 
data of individual cows, and it is this specific characteristic that makes sensors also 
interesting for phenotyping complex traits such as resilience. More recently, vision and 
image technologies are increasingly used to retrieve information on, e.g., cow posture 
for lameness detection (Van Hertemet al., 2018), or for identification of Holstein cattle 
(Bholeet al., 2019). Both technologies require specific approaches to retrieve the 
relevant information. For example, regression analyses can be used to analyse the 
sensor technologies that produce structured data, but this methodology also requires 
pre-processing to transform raw sensor data into information that can be used by the 
method itself. Machine learning approaches are increasingly being used (Lokhorstet 
al., 2019) in the domain of precision dairy farming, but not yet to study resilience. The 
vision or image technologies require artificial intelligence (deep learning) approaches 
to retrieve relevant information from the unstructured data. But the feasibility of vision 
technologies to study resilience has not been explored yet. The usefulness of sensor 
data to develop cow-specific proxies for resilience has been explored in the current 
study. We also explored the differences between regression analysis and machine 
learning (random forest) in predicting lifetime resilience score (as described in Adriaens 
et al., 2020) using sensor data collected during the first lactation. Finally, we explored 
the feasibility of camera-mounted drones, in combination with deep learning, to retrieve 
information of interest to assess resilience in an outdoor situation. 

This paper summarizes the main results and lessons we have learned in our attempt 
to utilize new and commercially available sensors, in combination with national data, 
in our understanding of resilience. 

Daily milk yield recordings were explored for the development of a cow-individual sensor-
based proxy for resilience. We used data provided by Cooperation CRV and CRV BV 
(Arnhem, the Netherlands)from198,745 first-parity Dutch Holstein Frisian cows milked 
by automatic milking systems. Three steps were subsequently taken: first, individual 
lactation curves were fitted, using daily milk yield and 4th order 0.7 quantile regression 
curves, that reflected production potential in absence of disturbances. Second, the 
natural transformed variance (LnVar) of the deviations between measured milk yield 
and the fitted curve were computed, with the expectation that resilient cows have a 
smaller range of deviations from their fitted curve, resulting in a lower value for LnVar. 
Third, LnVar was genetically correlated with health, longevity, fertility, metabolic and 
production traits. This demonstrated that low LnVar was indeed genetically correlated 
to better udder and hoof health, better longevity and fertility, a higher body condition 
score, and lower ketosis at the same level of milk yield. This made LnVar a good 
cow-individual sensor-based proxy for resilience, which could be used for breeding 
purposes (Poppe et al., 2020).However, we expected herd management to have an 

Introduction

Developing 
cow‑specific 
resilience proxies 
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effect on this cow-individual resilience. Therefore, herd-year estimates of the LnVar 
were assessed for 9,917 herd-year classes based on records of 227,655 primiparous 
cows from 2,644 herds from the years 2011-2017, while corrected for genetics and year-
season effects. These herd-year estimates were considered a herd resilience indicator, 
expecting that herd-year classes with a low estimate for LnVar contain cows that have, 
on average, a consistent daily milk yield and are, thus, resilient. Large differences in 
herd-year estimates were observed (mean 1.34, range 0.38-2.56). Moreover, herd-
year estimates of the same herds between years were positively correlated: if a herd 
had a high LnVar in a certain year, this same herd tended to have high LnVars in other 
years too. This indicated an effect of management on this trait, and thus, herd-year 
estimates were related to herd performance parameters derived from the national milk 
recording system. Herd-year classes with a high LnVar estimate tended to have a high 
proportion of cows with a rumen acidosis indication (r = 0.31), high somatic cell score 
(r = 0.19), low fat content (r = -0.18), long calving interval (r = 0.14), low survival to 
second lactation (r = -0.13), large herd size (r = 0.12), low lactose content (r = -0.12), 
and high milk production (r = 0.10). These correlations supported the hypothesis that 
herds with a high LnVar estimate are not resilient. The high correlation with rumen 
acidosis indication suggests that feed management may play an important role in 
resilience (Poppe et al., 2021). 

The fluctuations in daily milk production were useful as a proxy for breeding for resilience 
(Poppe et al., 2020). However, there are more sensor technologies available on farm. 
This provides the opportunity to combine data from different sensors that are collected 
early in life to predict lifetime resilience. Adriaens et al. (2020) reported on an approach 
to compute a lifetime resilience score, and they used sensor information to predict 
this score. They reported that adding features based on activity sensor data improved 
prediction accuracies significantly (P < 0.01), compared to predictions based on daily 
milk features alone. Poppe et al. (2020) and Adriaens et al. (2020) have in common 
that they pre-process the sensor data to retrieve biologically meaningful features to be 
included in their regression models. However, machine learning approaches, as random 
forest, are reported to find (non)linear relationships between variables, while requiring 
little effort for pre-processing (Touwet al., 2013). We studied whether random forests 
can predict lifetime resilience scores, and whether these algorithms require less pre-
processing efforts than a more traditional method like logistic regression. Data for this 
study originated from Dairy Campus (Lelystad, the Netherlands), and included data of 
370 dairy cows that had daily sensor data available for activity, milk yield, rumination, 
and weight, for at least 100 days during 1-300 DIM of their first lactation. We followed 
the same approach as Adriaens et al. (2020) to compute lifetime resilience scores, 
and divided the cows into three evenly distributed groups (High, Medium, Low lifetime 
resilience). Also following Adriaens et al. (2020), we aggregated sensor data to daily 
measurements. We derived 14 features from these daily measurements for each of the 
four sensor time series, totalling to 56 sensor features. These 56 features were used 
to develop a stepwise ordinal logistic regression model (considered as reference). We 
also developed three random forest models: one that used the same features that were 
deemed significant in the ordinal regression analysis, and one that used all 56 sensor 
features. The third random forest used the aggregated daily sensor measurements 
and lactation averages as predictive features. 

Predicting lifetime 
resilience using 
sensor data and 
machine learning
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All models were validated using 10fold cross validation, and the accuracy was used 
as performance evaluation metric. The accuracy was 45.1% for the logistic regression. 
The random forest that used the same six features resulted in an accuracy of 45.7%. 
Using all 56 pre-processed features in a random forest had an accuracy of 51.2%. 
Lastly, the random forest that used aggregated daily values and lactation averages had 
an accuracy of 50.5% (Table 1). We concluded that a random forest can reach similar 
performance as logistic regression, even with less pre-processing efforts (Ouweltjes 
et al., 2021). 

Unmanned Airborne Systems, better known as drones, are an example of a new 
technology that might be helpful in monitoring cows that are outdoors and further 
away from the farm, e.g., in rangeland beef production systems. This study aimed 
specifically at assessing the feasibility of fixed wing and multirotor camera-mounted 
drones to identify, locate, and retrieve characteristics of cattle that can be of relevance 
for resilience. Four field studies were conducted on two research farms (Carus, the 
Netherlands; Juchowo biological farm, Poland) to collect images and video footage 
by flying the mounted drone over herds on pasture. Material was annotated using a 
graphical annotation tool called Label lmg which uses label object bounding boxes in 
images. Annotation was done such that analyses could determine whether (1) cows 
can be detected in the field, (2) individual cows can be identified, (3) cow characteristics 
can be classified, (4) height and weight can be derived. Analyses were done through 
deep learning API Nanonets and AgisoftMetshape for imagery, and Yolo for video 
footages. Results are promising for detection, identification and characterization (Table 
2). Detecting cows in the field reached accuracies >95%, where detecting cows in 
fields without shade reached higher accuracies (99.9%) than in shaded fields (97.3%). 
Identifying cows reached an accuracy of 91%. This was reached for a small group of 
animals, each having a distinct coat pattern. Identification of cows that will have the 

Camera-
mounted drones 
to obtain cow 
characteristics for 
resilience

Table 1. Accuracy of classifying cows for lifetime resilience score. 
 

Model  Accuracy Range 
Logistic Regression 45.1 8.1 
Random Forest   
 6 features derived from sensor measurements 45.7 8.4 
 56 features derived from sensor measurements 51.2 10.9 
 Daily measurements and lactation averages 50.5 6.3 

 
 
Table 2. Number of cows used in field studies, and performance (in terms of precision) 
of deep learning models to detect, identify, and characterize poses, height and weight. 
 

  Carus Juchowo Farm 
  2018 2019 2020 2019 
Number of cows 4 6 16 100 
Performance     
 Detecting cows (%) 95.0 96.2  97.3 shaded 

99.9 unshaded 
 Identifying cows (%) 87.6 91.3  -- 
 Characterization of poses (%) 88.7    
 Height and Weight (Mean error)  6cm1 31kg2  

1Mean error in height with LIDAR; 2Mean error with RBG, after removing two extreme outliers. 
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same uniform colour will be challenging with the techniques explored. Characterization 
of cows into standing, grazing and lying the analyses revealed no difficulties in 
separating grazing from lying, but separating grazing and standing is challenging. 
The mean error in estimating height was 6cm with LiDAR, and in estimation of weight 
31kg with RGB 3D after removing two extreme outliers. These results suggest that 
camera-mounted drones could be a promising new technology in monitoring traits that 
can be used for resilience assessment.

The natural logarithm transformed variance of daily milk is a good proxy for resilience, as 
a low value of this proxy is genetically correlated to better udder and hoof health, better 
longevity and fertility, a higher body condition score, and lower ketosis and milk yield. 
There were large differences in resilience between herds. Correlating with herd-level 
data from the national milk recording systems revealed a positive correlation with the 
proportion of cows having a ketosis indication. This indicates that feed management 
may have an important effect on resilience. Using on-farm sensor data to predict 
lifetime resilience resulted in similar performance accuracies between regression 
and random forest. However, the random forest reached this performance with hardly 
any data pre-processing, in contrast to regression analysis. Finally, camera-mounted 
drones are a promising approach to locate cows and retrieve cow characteristics that 
can be related to resilience. 
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The transition towards circular agriculture is about careful management of soil, feed, 
animals, biodiversity and money, to achieve a near-to-closed-loop system of resources. 
A tailored breeding approach is an essential building block, to ensure cows’ health, 
welfare and production in new farming systems related to resource availability. In this 
study, we defined circular production systems and related cow traits and compared 
the performance of two types of cows on a dairy farm in the Netherlands that strives to 
be circular. To define characteristics of circular dairy production systems and breeding 
goal traits required to transition towards circular production, a workshop was organized 
with multidisciplinary experts. In this workshop, nine characteristics of circular dairy 
production systems were defined: flexible, cooperative, efficient without losses, healthy 
cows, low input without concentrates, extensive nature and landscape, multipurpose, 
pasture based, and closed. Connecting to these characteristics, cow traits were 
prioritized which fitted to one or more types of circular dairy production systems, for 
example, roughage efficiency, grazing behaviour, coping with dietary fluctuations, and 
environmental footprint. A quick scan was performed at research farm “Knowledge 
Transfer Centre De Marke”, where innovative measures are designed and tested 
to minimize nutrient losses to work towards circular farming. The performance and 
variation in breeding goal traits of two types of cattle was investigated. Half of the in 
total ninety dairy cows at “De Marke” is of the Holstein Friesian breed, the other half 
is a three-breed rotational cross (Holstein Friesian, Montbéliarde, and Scandinavian 
Red cattle), which are managed together. Preliminary analysis on production and 
reproduction traits indicate that both types of cattle perform well within this extensive 
farming system. In recent years, the variation within breeding goal traits for Holstein 
Friesian AI bulls greatly increased and in combination with the implication of genomic 
selection, this helped to improve longevity and fertility traits. The quick scan highlights 
the importance of a large pool of genetic variation within or between cattle breeds. 
This variation will be essential for breeding programs when cows have to perform in 
a different environment, as will be the case when transitioning towards circular dairy 
farming.

Keywords: Dairy cows, circular farming, genetic diversity, animal breeding.

To reduce the impact of agriculture on climate change, the ministry in the Netherlands 
calls for a transition to circular farming by 2030 (Rijksoverheid, 2018). In this transition 
there is an aim to achieve a near-to-closed loop system of resources involving the 
nutrient cycle between livestock, manure, land and crops (Figure 1). This transition 
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may impact the resources available to dairy cows, which can have an impact on health, 
welfare and production. Animal breeding can support the transition towards circular 
farming, where we make use of the natural variation between cows, to select cows that 
perform well and are easy to manage in new farming systems. Breeding is a process 
of which the impact is observed after multiple generations, therefore it is important to 
think ahead when defining breeding goals. 

The current selection index for the Dutch national breeding goal for dairy cattle consists 
of fifteen characteristics for the following categories: milk production, milk components, 
feed efficiency, health, reproduction, longevity and conformation (CRV, 2018). The 
selection index is the sum of weighted breeding values, whereby weighting is currently 
mainly determined on the basis of economic value and desired gains. To enable the 
circularity of dairy farming, the environmental impact can be considered as changing 
the desired gain and reweighing the index traits. Also, new traits can be added to if they 
are clearly described, measurable on a large enough scale for an affordable price, have 
phenotypic variation, are heritable, and have limited adverse genetic correlations with 
other breeding goal traits. These factors have to be investigated before a trait can be 
applied to breeding practices. Furthermore, common traits for which breeding values 
exist, may have to be re-evaluated in an environment that differs from conventional 
Dutch dairy farms.

The aim of our study was to investigate which cow traits can be used in breeding 
programs to ensure the health, welfare and production of dairy cows in new farming 
systems related to resource availability. First, we defined characteristics of a circular 
dairy farm and corresponding cow traits. Second, we performed a case study on 
research farm “De Marke”, a dairy farm where innovative measures are designed and 
tested to minimize nutrient losses. Here we investigated the effect of resource availability 
on two types of dairy cows: Holsteins and three-way-crosses.

Figure 1. The nutrient cycle between livestock, manure, land, and crops.
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A workshop with fourteen multidisciplinary experts (with expertise on dairy farming, 
animal breeding and genetics, animal production systems, the effect of livestock on 
the environment, nature inclusive dairy farming, and plant systems) was organised to 
define characteristics of circular dairy production systems. The system definitions give 
a framework of the environment under which a dairy cow should perform, and is the 
first step before a new breeding goal can be defined (Oldenbroek & Van Der Waaij, 
2015). Based on the system definitions, cow traits were defined relating to one or more 
of definitions of circular dairy production systems. Traits can be either new or existing 
traits that may have to be re-evaluated in a new farming system.

A case study was performed on data from research farm “De Marke”, a dairy farm where 
innovative measures are designed and tested to minimize nutrient losses, where we 
investigated the effect of resource availability on the production and reproduction of 
two types of dairy cows: Holsteins and three-way-crosses. The crosses were a three-
breed rotational cross, between Holstein, Viking Red and Montbéliarde cattle, for which 
crossbreeding started in 2010. The analysis included 446 lactations between 2014 and 
2019 from 187 cows. A correction was applied for parity number and calving season. 

In the workshop with multidisciplinary experts nine characteristics for circular dairy 
farms were defined. We came to the conclusion that there will likely not be one circular 
system that fits all, but tailor-made solutions for individual farms. The characteristics of 
circular dairy farms were: flexible, cooperative, efficient with minimal losses, healthy 
cows, low input, extensive with the focus on nature and landscape, extensive which 
is pasture based, multipurpose, and closed housing. 

Flexibility is important when the input of nutrients becomes variable in circular systems 
where, for example, a farm strives to use regionally produced feed. Similarly, when the 
feeding of substrates is reduced the cow becomes more dependent on the quality or 
quantity of roughage and grass. In such a system cows will need to be resilient and 
produce milk efficiently from a roughage based diet. Circular farms can also aim to be 
cooperative, where cows are used to process losses of regional arable farmers (Van 
Zanten, 2016) which can cause variability in the feed available. To be able to process 
a variable diet, cows need a healthy rumen. An important characteristic applicable to all 
circular farms is to minimize the losses of nutrients, both on the farm, crop and animal 
level. On cow level there is interest in monitoring the losses of nitrogen, phosphate, 
and potassium, because of their negative environmental impact when oversupplied. 
Similarly, the reduction of greenhouse gasses emitted directly into the air, such as 
methane, offers potential to reduce the environmental impact of both circular and 
conventional dairy farming (van Bruggen et al., 2019). It is important to monitor the 
wellbeing of cows when the farming systems changes, as healthy cows make a farm 
easier to manage for a farmer. Furthermore, good health contributes to the longevity of 
a cow, which reduces the number of replacements to be reared and helps to increase 
both sustainability as well as profitability of the sector (Van Pelt, 2017). A characteristic 
that was highlighted before is low input. Currently, many soy-based substrates are 
fed to livestock which can be used as food for humans (Dei, 2011). A grass-based 
diet reduces the feed-food competition between humans and livestock. To improve 
a cows’ production from a grass-based diet, it can be of interest to study the grazing 
behaviour in the future. This grass-based diet fits into the view of extensive farming 
systems. Which can either be pasture based, with pastures with highly nutritional grass 
types, or adapted to maintain nature and landscapes, where the diversity of plants 
and animals (e.g., insects and meadow birds) is a priority. Another characteristic of a 
circular farm can be to keep cows for multiple purposes. A high quality and quantity 
of meat, after the milk-productive lifetime of a cow, can reduce the environmental 
impact per kg of product. Furthermore, it may be of interest to investigate the manure 
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composition of cows, to be used as a qualitatively good fertilizer in arable farming. 
A final system definition can be closed housing, which to many does not correspond 
with circular farming. However, closed housing offers potential to minimize to spilling 
of nutrients into the environment by using, for example, air washers. 

Many cow traits can be applied in various types of systems, and all contribute to the 
reduction of the environmental impact of dairy farming in circular and conventional 
farming systems. Some traits already exist but may have to be re-evaluated in a new 
farming system. Some traits are new and should be investigated before they can be 
applied in breeding programs. The cow traits that are important for a dairy cow to 
perform well in circular farming systems, and traits that help to reduce the environmental 
impact of dairy farming, that we defined are: longevity, health, claw health, udder health, 
rumen health, robustness, conformation, fertility, resilience, milk components, milk 
yield, roughage intake and efficiency, water use, nitrogen, phosphate, and potassium 
efficiency, greenhouse gas emissions, grazing behaviour, and multipurpose (meat 
and manure).

The case study on dairy farm “De Marke” showed that both types of cattle performed well 
(Ducro et al., 2021). The Holstein cows produced more kilograms of milk, whereas the 
crosses had a higher fat and protein percentage in the milk. Furthermore, the crosses 
had a shorter time between calving partly due to less time between the first and last 
insemination. Information on health was not available. Differences in production and 
reproduction between the two types were reflected by different breeding goals, and 
also by the estimated breeding values for these traits. Which shows that the breeding 
goal largely influences the desired characteristics of different types cattle. The variation 
within breeding goal traits for Holstein AI bulls greatly increased over the recent years, 
which helped to improve longevity and fertility of Holstein cows. Together with genomic 
selection, genetic variation helps to breed for circularity and improve traits for Holstein 
cows and all other breeds. 

Breeding is a process that may take multiple generations, and therefore it is important to 
think ahead when defining a breeding goal. In the transition towards circular agriculture, 
we need to re-think breeding goals. In this study we defined cow traits which can enable 
the transition towards circular farming, for example: longevity, rumen health, resilience, 
roughage efficiency, water use, grazing behaviour, and greenhouse gas emissions. 
For some traits breeding values exists, however re-evaluation may be required in 
environments that differ from conventional Dutch dairy farms. Some traits are new and 
need further investigation before they can be added to the selection indexes.
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Breeding values for Holsteins are expressed in Germany on a relative scale with 
average 100 and genetic spreading 12. This includes the established total merit 
index RZG. EBV on relative scale have advantages but an important disadvantage 
is that they do not show the economic impact of selection decisions directly. The 
new, additional total merit index RZ€ (spell RZ Euro) is therefore expressed in Euro 
margin. The margin refers to the total margin realized by a cow during her lifetime of 
about three years in comparison to the basis that are 4 – 6 years old cows. Included 
in RZ€ are the evaluated traits with their economic impact based on current margin 
calculations. Economic weights purely follow transparent margin calculations without 
any additional aspects from a breeding policy point of view. In this aspect the RZ€ is 
unique compared to other internationally used total merit indices.  

Keywords: Total merit, breeding index, economic based, Holstein .

In Germany estimated breeding values (EBV) for dairy breeds are expressed as 
relative breeding values on a scale with average 100 and a genetic standard deviation 
of 12. Only exceptions are the EBV for milk production traits that are expressed on 
the phenotypic scale (kg, %), respectively. The relative scale is used for single traits 
but also for all indices including the total merit index (TMI) RZG, established in 1996. 
The advantage of a relative scale is that EBV can be compared directly across traits 
and indices in the sense that it is known where the animal ranks within the trait/index 
(e.g., +2 standard deviation >= rank 97,5%). The disadvantage of a relative scale 
is that differences on the phenotypic scale between animals are not directly visible. 
For the total merit index this means that the economic impact of higher or lower RZG 
is not clear. Therefore, there was an increasing demand of farmers and industry to 
have an additional TMI on an economic scale i.e., in Euro (€) to clearer indicate the 
often‑underestimated economic impact of selection for animals with higher or lower 
TMI, the RZ€. For Holstein, the RZ€ was introduced in August 2020. For the other 
dairy breeds RZ€ is not available because the direct health traits as important part of 
RZ€ are so far only available for Holstein.  
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To calculate the economic impact per relative point of published EBV (resp. per genetic 
standard deviation) two basic figures are needed:

•	 phenotypic units that equal ±1 relative point of published EBV.

•	 margin per trait unit on the phenotypic scale (e.g. per case).

Due to technical reasons phenotypes used in genetic evaluation are often different 
compared to traits/scales used for economic calculations in dairy farms. Examples 
are longevity or calving ease traits. In genetic evaluation for longevity not the total 
productive lifespan in time units is used, but survival as 0/1 for certain time periods in 
a multi-lactation-model. Calving ease uses scores for ease of calving on a 1to 4 scale 
that is different to percentage of difficult calvings. Therefore, the genetic standard 
deviations from the evaluation models cannot be used for economic calculations. 
According to that the genetic standard deviations on the phenotypic scale were derived 
from the observed daughter differences between top and bottom 25% of daughter 
proven Holstein AI bulls from the latest three full proven bull birth years. These were 
AI bulls born 2008 to 2010 (for the trait longevity the bulls were born 2003 to 2005). 
Only daughters that had the chance to show performance over three lactations were 
included (for longevity to survive eight years). For most traits the difference between 
the top and bottom 25% of bulls was in the range of 20 to27 relative points of EBV 
i.e. about two genetic standard deviations. The daughter difference between the two 
bull groups were standardized to 24 points so that the daughter difference represents 
one genetic standard deviation (50% from sire). Table 1 shows the results i.e. what 
difference on the phenotypic scale equals 12 points or 1 genetic standard deviation 
of relative breeding value.      

In the German genetic evaluation system 13 individual health traits or disorders are 
included, but breeding values are published for four traits/indices only. The EBV for 
mastitis resistance (RZudderfit) is the only one health trait comparable to the single 

Method

Phenotypic units 
per relative point 
EBV

Table 1. Description of phenotypic units corresponding to a genetic standard deviation Sg (12 points) for 
each trait/EBV. 
 

Relative EBV Daughter trait 
Daughter phenotype

(Ø all lact.) Realized Sg 
RZS Cell count (k/ml) 218 831 
RZN Longevity (days) 1115 259 
1st-to-last heifer 1st-to-last heifer (days) 31.3 6.2 
NR heifer NR heifer (%) 72.0 5.0 
calv.-1st Calv.-1st (days) 84.2 9.0 
1st-to-last cows 1st-to-last cows (days) 51.5 10.1 
NR cows NR cows (%) 55.7 6.3 
CE direct Difficult calvings (%) 3.5 2.01 
SB direct Still born calves (%) 5.8 2.41 
CE daughter Difficult calvings (%) 3.2 1.71 
SB daughter Still born calves (%) 5.8 3.11 
Dairy type Dairy type (scores) 81.9 0.9 
Body Body (scores) 82.1 1.1 
Feet & legs Feet & legs (scores) 80.6 1.0 
Udder Udder (scores) 81.2 1.0 
RZD Milking speed (kg/min.) 2.42 0.40 
RZcalffit Young stock survival (15 mo.) % 93.0 4.41 

1Spreading on phenotypic scale is skewed. 
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traits in table 1. Because the economic calculations should be based on published 
EBV, the impact of one genetic standard deviation of published health trait indices for 
hoof health (RZhoof), metabolic stability (RZmetabol) and resistance to reproduction 
disorders (RZrepro) were derived as shown in table 2. Differences in these published 
health indices have impact on three to six underlying traits economic weight can be 
calculated for. Within each health trait index the included single traits are positively 
correlated so that improving genetic level for the health index by one genetic standard 
deviation improves the level for all included traits at the same time as given in table 2. 

  

The margin per trait unit is calculated as direct marginal cost minus direct marginal 
return under average German production conditions keeping all other traits constant 
(ceteris paribus condition). It is important to consider only direct economic impact 
but not indirect impact via other traits included in RZ€. For the example of mastitis 
resistance, the direct economic impact of one unit more mastitis (= one additional 
case of mastitis) are the extra costs for treatment (veterinarian, drugs, labor) and 
produced milk that is not tradable due to antibiotic treatment. Costs for extra culling 
of cows with severe mastitis is not considered because this is included in economic 
impact of longevity. EBV longevity is based on all involuntary culling including culling 
due to mastitis. By exclusively considering the direct costs and returns of each trait 
double counting of economic effects is avoided. The first column in table 3 gives the 
calculated margins per trait unit.

Genetic differences for somatic cell count and conformation traits have only very limited 
economic impact and therefore are not included in RZ€. Somatic cell count is mainly 
an indicator trait for mastitis resistance that is included in RZ€. Under ceteris paribus 
condition (same incidence rate of mastitis) differences in cell count have no economic 
impact on farm level. Greater 99% of all produced bulk milk meats the threshold 
of 400,000 cells/ml that would lead to restrictions in milk sale. The importance of 
conformation traits in dairy breeding practice is based on expected indirect effects via 
other functional traits (longevity, fertility, calving, health) that are included already with 
their direct economic impact in RZ€. Conformation traits have a direct economic impact 
when selling breeding animals because the breeding cattle market values animals 
with better conformation. Even though German Holstein farmers sell relative to many 
other countries more breeding heifers (e.g. per year 80,000 German Holstein heifers 

Margin per trait 
unit

 
Table 2. Description of phenotypic units of each health trait corresponding to a genetic 
standard deviation (12 points) of its corresponding health index EBV. 
 

Relative EBV Daughter trait 
Daughter phenotype 

(Ø all lact.) Realized Sg 
RZudderfit Mastitis % 25.6 12.01 

Mortellaro % 24.11 12.01 
Sole ulcer % 15.11 13.21 
Digital phlegmon % 8.41 10.81 
White line defect % 7.61 6.41 
Laminitis % 6.81 3.51 

RZhoof 

Tylom % 5.11 4.41 
Ovarian cycle disorders % 19.71 11.51 
Metritis % 13.11 7.41 RZrepro 
Retained placenta % 7.51 4.91 
Displaced abomasum % 1.41 3.11 
Milk fever % 1.91 1.71 RZmetabol 
Ketosis % 3.11 2.41 

1Spreading on phenotypic scale is skewed. 
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exported) the absolute number of sold heifers per cow and lifetime is limited to <0.2. 
This leads to a direct economic impact of conformation traits for an average farm of 
only about 0.5% relative weight in RZ€. More details on the economic calculations for 
all traits can be found on www.vit.de (publications – 2020 – The new RZ€).

The focus of dairy farmers making selection decisions on the base of EBV is the 
(economic) superiority of the selected female resp. the daughters of the selected bull. 
Therefore, the RZ€ is the sum of the economic impact for all traits based on the entire 
productive lifespan of a cow. The average productive life of a German Holstein cow 
was assumed with a productive life of about 1100 days (3,01 years) giving birth to three 
calves and completing 2,75 lactations with average 360 milking days. Based on these 
assumptions and the genetic standard deviations from table 1 and 2 the economic 
impact of one relative point EBV per cow lifetime was calculated (see table 3).

For every animal and trait € margin is calculated as (relative) points EBV (deviation 
from 100) multiplied with economic impact per (relative) point EBV and lifetime. The 
sum of all trait margins is the total merit in Euro = RZ€. Because the base for all EBV 
are 4 to 6 year old cows (= 100, representing active cow population) the RZ€ of a 
female expresses the difference in margin she will realize in average during her lifetime 
compared to an average cow. The standard deviation of RZ€ is about 535 € and top 
young genomic females and bulls reach up to almost +3,000 RZ€.

From the ratio of the margins per genetic standard deviation and lifetime the relative 
weights of the traits and trait complexes can be calculated. In RZ€ the milk production 
traits have 41% weight, followed by longevity with 27% and direct health traits with 
16%. Fertility traits sum up to 7%, young stock survival has 6% and calving traits 3% 
weight (see table 4).

The correlation of the new TMI RZ€ with the established TMI RZG is high with 0.97. This 
even though the RZG includes 15% conformation traits and the ratio of weights included 

Economic impact 
per cow lifetime

Selection 
response

 
 
Table 3. Margin per trait unit and margin per point relative EBV and lifetime. 
 

EBV trait 
€ per unit resp. 

per case Sg 
€/Sg per 
lifetime 

€/EBV  
unit+life 

Fat (kg) 2.56 25.1 197.72 7.88 
Protein (kg) 4.09 19.7 248.76 12.56 
Lactose in F/P free milk (kg)1) -0.024 690 -51.13 -0.07 
RZN/Herdlife (day) 1.00 259 258.69 21.56 
Calving-to-first (day) 2) 0.33  9.0 6.05 0.50 
First-to-last-insemination heifers (day) 1.67 6.2 10.35 0.86 
First-to-last-insemination cows (day)  3.67 10.1 52.06 4.34 
Stillbirth rate maternal 137.5  3.1 12.81 1.07 
Stillbirth rate direct 137.5 2.4 9.87 0.82 
Calving ease maternal 59.4 1.7 4.03 0.34 
Calving ease direct 59.4 2.0 5.03 0.42 
RZudderfit 186.0 12.0 61.39 5.12 
RZhoof   32-74 4-13 30.13 2.51 
RZrepro 28-100 5-12 17.10 1.43 
RZmetabol 131-289 2-3 39.86 3.32 
RZcalffit (young stock survival) 449.7 4.4 54.61 4.55 
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Figure 1: Selection response selecting for RZ€ (selection difference top 10% of 256,352 
females from herd genotyping born 2019+2020, gEBV 04-2021). RZM=index milk production 
traits, RZN= relative EBV longevity, RZR= daughter fertility index, RZKm/d=calving trait index 
maternal/direct, RZhealth= total health index, RZcalffit= relative EBV young stock survival, 
RZS= relative EBV somatic call score, RZE= overall conformation index

in both TMI is partly different (for composition of RZG see www.vit.de ‑ description of 
breeding values). The expected selection response for selection by RZ€ overall follows 
the weights for the trait complexes. The expected progress for traits longevity, direct 
health, fertility, and calving traits is slightly higher compared to the relative weight in 
RZ€ because these traits have significant positive genetic correlations among each 
other creating additional indirect selection response. Expected progress in young stock 
survival is small compared to e.g. fertility traits with comparable weight in RZ€. Young 
stock survival has no correlation to longevity and health traits of cows.

 
Table 4. Relative weight of traits and trait complexes in RZ€. 
 

EBV trait €/Sg per lifetime Resulting weights (%) 
Fat (kg) 197.72 20.7 
Protein (kg) 248.76 26,0 
Lactose in F/P free milk 
(kg)1) -51.13 -5.3 

41 Milk production traits 

RZN/Herdlife (day) 258.69 27.0 27 Productive life 
Calving-to-first (day) 2) 6.05 1.1 
First-to-last-ins. heifers (day) 10.35 0.6 
First-to-last-ins.cows (day)  52.06 5.4 

7 Daughter fertility 

Stillbirth rate maternal 12.81 1.3 
Stillbirth rate direct 9.87 1.0 
Calving ease maternal 4.03 0.4 
Calving ease direct 5.03 0.5 

3 Calving traits 

RZudderfit 61.39 6.4 
RZhoof   30.13 3.1 
RZrepro 17.10 1.8 
RZmetabol 39.86 4.2 

16 Health traits 

RZcalffit 54.61 5.7 6 Young stock survival 
 
 
 

 
 
Figure 1: Selection response selecting for RZ€ (selection difference top 10% of 256,352 
females from herd genotyping born 2019+2020, gEBV 04-2021). RZM=index milk 
production traits, RZN= relative EBV longevity, RZR= daughter fertility index, 
RZKm/d=calving trait index maternal/direct, RZhealth= total health index, RZcalffit=relative 
EBV young stock survival, RZS= relative EBV somatic call score, RZE= overall 
conformation index 
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The importance of conformation traits in farmers selection decisions was already 
mentioned. Therefore, a concern of farmers regarding selection by RZ€ is the selection 
response for conformation and for somatic cell count. Even though not included directly 
in RZ€ there can be expected significant positive indirect selection response for overall 
conformation by selecting for RZ€ (see figure 1). Overall feed and legs and udder are 
positively correlated to longevity and direct health traits. Dairy type is correlated to milk 
production. The indirect selection response for overall conformation by selection for RZ€ 
equals almost two-thirds of the response selecting for RZG including 15% conformation 
traits. For somatic cell count the same good selection response is expected as in former 
times for RZG with 7% direct weight for somatic cell count but no mastitis resistance. 
This could be expected because now mastitis resistance has 6.4% weight and genetic 
correlation to somatic cell count is high.

The new and additional TMI for Holsteins RZ€ shows economic impact of selection 
decisions directly because of the scale € margin per lifetime. The composition follows 
strictly economic calculations without additional aspects from breeding politics. This is 
different to most other TMI that e.g. mostly include conformation traits without a true 
calculation on (direct) economic impact of conformation traits.

Correlation to established TMI RZG including conformation and weighting of trait 
complexes partially based on breeding policy aspects is high. Nevertheless, impact of 
RZ€ should not be underestimated. The scale € margin compared to an average cow 
can make Holstein dairy farmers more aware of the big impact on economy of genetics 
and selection decisions. Especially the growing number of Holstein dairy farmers that 
use herd genotyping for selecting their females experience how big the differences in 
EBV among their animals are and how good prediction of performance differences by 
genomic EBV is. With this information they can comprehend those differences in RZ€ 
give a realistic picture of the economic differences based on genetics between animals 
and how much extra margin is to gain following a strict economic breeding goal.

Finally, the RZ€ shows that an economically based breeding goal must not be in 
contradiction with animal health and the expectation of the society. Health traits 
including fertility, calving and longevity get 59% weight in the breeding goal because 
of economic reasons and breeding goal is no longer dominated by milk production 
traits and conformation.

Summary and 
outlook
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The concept of circular breeding goals necessitates looking at the bovine industry in 
its entirety and becomes broader than the agri-industry circle when issues such as 
climate, environment, animal welfare and consumer preferences are being considered. 
Many of the potential solutions discussed have impact across the bovine sectors or 
have downstream impacts on the other sectors. Economically balanced breeding goals 
delivering genetic gain across a wide range of measurable traits are a core building 
block on the journey to breed more sustainable cattle. 

The bovine sector comprised of dairy and beef cattle is worth up to 6.5 bn in yearly 
export revenue to the Irish economy. For the context of this paper the sector can 
be broadly divided into four distinct but intrinsically linked sub-sectors namely the 
dairy sector, the commercial suckler sector, the bull breeder sector, and the dairy 
beef sector. Currently the national bovine herd stands at circa 1.5 million dairy cows, 
950,000 suckler beef cows and their progeny giving a total inventory of circa 6 million 
animals. In recent years since the abolition of milk quotas in 2015 the dairy herd has 
expanded by 400,000 additional cows with suckler cow numbers declining in the 
same period by circa 85,000 cows. Recent national farm survey results (Donnellan et 
al, 2020) indicate dairy herd income averaged €1,118 per ha compared to €285 and 
€381 per ha for suckler cowherds and other cattle rearing herds respectively. From 
the perspective of circular breeding goals this paper will outline a number of initiatives 
aimed to increase productivity, profitability and reduce the carbon footprint across all the 
sectors simultaneously. ICBF have responsibility to harness genetic gain to increase 
profitability in a sustainable way for all Irish cattle farmers and the wider agri-industry. 
This is achieved through an integrated database which continues to evolve to meet the 
demands of the industry. Figure 1 shows the current level of integration or the within 
agri-sector circle which currently allows genetic evaluations, profit index and genetic 
gain generation to occur across the dairy and beef sectors. In addition to genetic gain 
the database is also accessible to farm advisors to access phenotypic data to help 
improve profitability at the individual herd level but also at discussion group and milk 
co-operative level. Figure 1 also envisages the potential future circle as the challenges 
facing the sector such as the environment and greenhouse gas emissions are tackled 
and new opportunities are identified such as consumer experiences and perceptions 
and potential animal product related human health benefits.

Summary

Background
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In 2020 the Irish Government launched a national “Climate and Air Roadmap” for the 
agriculture sector which aims to reduce the current agriculture carbon footprint from 
biogenic methane by 10% by 2030 and to become carbon neutral by 2050.Many of 
the assumptions in that report were based on the Teagasc Marginal Abatement Cost 
Curve (MACC) regarding greenhouse gas (GHG) and ammonia emissions (Lanigan 
et al 2018). Figure 2 outlines some the actions presented in the MACC report ranging 
from adopting new management practises to the improved efficiency from increased 
genetic merit. 

Improving carbon efficiency through adoption of the EBI for dairy cattle breeding was 
identified as high value in the MACC report from both a low cost and a high impact 
viewpoint in terms of emissions abatement. Work by Ramsbottom et al. (2012) using 
individual cow-based and herd-based data reported an increase in net margin per 
cow of €1.94 per one euro improvement in EBI (expectation of €2). Figure 3 is a 
diagrammatic representation of the current emphasis within the dairy EBI. More recent 
work by Shalloo et al., (2021) has elucidated 6 primary traits included in the EBI which 
have contributed significantly to trends in dairy GHG; calving interval, cow survival, 
liveweight, milk, fat and protein. Cumulatively, genetic progress (€12.6 EBI/yr) for these 
key traits is improving gross GHG mitigation by 24.9 kg CO2e/lactation (or /cow/year). 
Table 1 shows the genetic trend of these 6 traits and the impact on GHG emissions. 
Results indicate increased genetic merit for milk production traits and liveweight and 
the associated response in phenotypic performance actually resulting an increase in 
GHG emissions per unit change in those traits while a reduction in calving interval 
(related to earlier turnout to avail of less costly feed) and better cow survival (due to 
less replacements needed as cows live longer)both contribute to a reduction in GHG.

Climate and the 
environment 

Role of current 
Dairy Breeding in 
Greenhouse gas 
mitigation

Figure 1. Current and future level of industry integration or circle of engagement for 
bovine genetic improvement in Ireland

Figure 1. Current and future level of industry integration or circle of engagement for bovine genetic improvement 
in Ireland 
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Figure 2. The Teagasc Marginal Abatement Cost Curve for GHG and ammonia (Lanigan et al 2018).

Figure 3. Current trait emphasis in the Economic Breeding Index for Irish dairy cattle 

Figure 2. The Teagasc Marginal Abatement Cost Curve for GHG and ammonia (Lanigan et al 2018).  

 

Figure 3. Current trait emphasis in the Economic Breeding Index for Irish dairy cattle. 
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Genetic progress in the Suckler herd is driven by the Terminal and Replacement 
economic indexes. The indexes were launched in 2011 but in 2016 the Replacement 
index was revamped to place more emphasis on maternal traits within the index. 
Using measures of genetic merit and economic based profit indexes is a more recent 
concept for suckler beef farmers compared to their dairy comrades. While many dairy 
herds have been engaging with the ICBF database since 2001 the majority of beef 
farmers commenced engagement in 2008 with the launch of the Suckler Cow Welfare 
Scheme (SCWS) where farmers received a monetary payment for recording ancestry, 
calving, weanling and docility measures. This data provided a significant boost to 
genetic evaluations and as can be seen in Figure 4 the genetic trend of the suckler 
herd for Terminal traits increased noticeably from 2010 to 2014 even though there 
was no stipulation for genetic improvement in that scheme. In 2016 the Beef Data and 
Genomics Programme was launched which in addition to many of the measures in the 
SCWS also contained a genotyping requirement along with a genetic improvement 
stipulation based on the Replacement index. The scheme has resulted in the generation 
of circa 2 million genotypes from 25,000 herds where the focus was on the breeding 
males and females in those herds. Those genotypes combined with the phenotypes 
from these herds have become the corner stone for the ICBF beef genetic evaluations.

Figure 5 is a graphical representation of the traits in the Replacement and Terminal 
indexes. All Terminal index traits are also included in the Replacement index. The 
Replacement index places heavy emphasis on Milkability, carcass weight, fertility, 
longevity and the maintenance cost of the suckler cow as measured through the 
cow liveweight trait. Work by Quinton et al. (2018) estimated that a €1 increase in 
Replacement index for beef suckler cows reduced enteric methane emissions intensity 

Role of current 
Beef Breeding in 
Greenhouse gas 
mitigation

Figure 4. Trend in Terminal and Replacement Index for Suckler herd females.

Table 1. Key traits in the Dairy EBI which are influencing Enteric methane emissions 
intensity. 

Trait PTA Trend (units/year) Change in kg CO2e/trait unit 
Calving interval (days) -0.21 59.8 
Survival (% per lactation) 0.12 -34.4 
Milk fat (kg) 0.60 5.41 
Milk protein (kg) 0.55 5.65 
Milk kg 3.12 0.22 
Liveweight (kg) 0.22 2.05 
 

 

 

 

 

 

Figure 4. Trend in Terminal and Replacement Index for Suckler herd females. 
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by 0.009 kg CO2e/kg meat/cow/year, and that a €1 increase in Terminal index reduced 
emissions intensity by 0.021 kg CO2e/kg meat/cow/year. 

There are a range of avenues available to improve the genetic progress currently 
occurring but for the purposes of this paper they have been classified into two broad 
categories namely a) increasing the gain in the current traits and b) incorporating 
new traits which have either an economic or environmental benefit not captured in 
the existing trait suite. 

Below are 6 areas which can be improved to facilitate increased genetic gain.

Currently the level of AI usage in the dairy herd to generate replacements is high with 
73% of dairy sired calves in 2020 sired by an AI sire with the remainder either sired 
by a natural service sire (10%) or no recorded sire (17%). For those 2020 dairy sired 
calves the average superiority of AI sires versus natural service sires in EBI was €73. 
In those same dairy herds the level of AI usage of beef sires on dairy cows is low at 
26% with the remainder either sired by natural service sires (34%) or no sire recorded 
(40%). The average superiority of AI sires versus natural service sires in Dairy Beef 
Index (DBI) was €22. Similarly in the 2020 suckler herd calves only 19% were sired 
by AI with 57% sired by natural service sires and 24% with no sire recorded. The 
average superiority of AI sires versus natural service sires was €7 for Terminal and 
€36 for Replacement index.

Figure 5. Relative emphasis in the current Replacement and Terminal indexes. Revenue 
traits are in orange with costs of production traits in blue.

Can we accelerate 
genetic progress?

Increasing genetic 
gain in the current 
traits

Increased AI sire 
usage and sire 
recording

Figure 5. Relative emphasis in the current Replacement and Terminal indexes. Revenue traits are in orange 
with costs of production traits in blue. 
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Milk recording drives the Milk sub-index of the dairy EBI but also has a large effect on 
the Health sub-index which includes the somatic cell count trait. Currently circa 55% 
of cows are milk recorded. Various initiatives are underway such as engagement with 
milk recording organisations to provide more value added at the individual cow level 
(detailed SCC reports, harnessing of spectral for new traits like energy balance and 
potential GHG emissions) but also with milk co-operatives to build on the existing within 
co-op benchmarking reports currently available.

Cow live weight is a key component of both the dairy and beef profit indexes where 
there is a penalty on increased liveweight due to the increased maintenance feed costs 
associated with larger cows. To date most of the cow liveweight prediction has come 
from cows which are weighed in auction houses before slaughter or from a numerically 
smaller dataset from Teagasc research herds which provide comprehensive data 
throughout lactation. Genetic correlations are also utilised in the genetic evaluation with 
traits with larger volumes of data such as weaning weight, carcass weight and cull cow 
weight. The launch of the Beef Environmental Efficiency Pilot scheme in Suckler herds 
(2019 and 2020) has resulted in over 700,000 new cow and calf liveweight records 
potentially available for inclusion in genetic evaluations. A nationwide weighing service 
infrastructure has been put in place to facilitate the low- cost rental of scales by farmer 
which will be available to both beef and dairy farmers to avail of.

Three pilot projects have been initiated since 2018 to assess the feasibility of DNA based 
calf registration. The most recent in Spring 2021 included 400 dairy herds. Participating 
herds must have their full list of breeding females and males genotyped which then 
allows the ICBF database to parentage verify the calf based on the returned genotype 
and this information is then relayed to the Department of Agriculture (DAFM) for calf 
registration. The vision is to migrate the full national herd to DNA based registration 
by 2030 which will have many benefits in terms of removing parentage errors from 
evaluations and enhancing genomic training populations.

Currently the economic values used in the dairy and beef indexes are derived from 
the Teagasc Moorepark Dairy Systems Bioeconomic model (Shalloo et al., 2004) and 
the Teagasc Grange Beef Systems Model Bioeconomic model (Crossan et al., 2006). 
The two models are independent of each other and designed to accurately assess the 
economic impact of the traits within that particular sector. However, with issues such 
as environment and Greenhouse gases and the obvious links between the sectors 
described in Figure 1, initial discussions have commenced on the potential to combine 
both models into a single entity to allow synergies such as the ability to model national 
inventory for aspects such as beef production and GHG emissions. 

In 2020 ICBF launched a new profit index called the Dairy-Beef index (Berry et al 
2019). This index is for dairy farmers who want to use beef sires on their dairy cows. 
In 2020 690,000 calves were born to a dairy dam and a beef sire which represented 
46% of the total 2020 dairy calves. In recent years with dairy expansion, herd size has 
increased from an average of 44 cows calving in 2010 to 77 cows in 2020. Farmers 
have placed more priority on calving ease and short gestation for both the dairy and 
beef sires used on their cows. As a result the carcass merit of the dairy x beef male 

Increased 
engagement in milk 
recording

Increased cow 
liveweight recording

Genotyping all 
animals through 
DNA based calf 
registration

Harmonisation of bio-
economic models
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calf available to the dairy-beef rearing herds has been declining. The Dairy-Beef index 
aims to maintain calving traits for the dairy farmer while improving feed efficiency and 
carcass traits for the beef rearer and finisher. 

Tuberculosis (TB) and Liver Fluke infection are two common diseases which afflict Irish 
dairy and beef cattle. Levels of TB in the population over the last 5 years has averaged 
16,800 cases with 4.3% of all herds experiencing a reactor in the annual herd test. 
This is despite decades attempting to eradicate the disease and annual costs almost 
reaching €100m in 2020. Liver Fluke is a common parasite in Irish cattle afflicting 7-8% 
of steers and heifers and up 40% of cows in wet years. Animal Health Ireland have 
estimated an average cost of €70 per condemned liver in slaughtered steers factoring 
in condemned livers and lack of thrive due to infection. The launch in 2019 of genetic 
evaluations for Tuberculosis (Ring et al., 2019) and Liver Fluke resistance (Twomey 
et al., 2016) were the culmination of 10 years of collaborative work involving Teagasc, 
ICBF, DAFM and Animal Health Ireland (AHI). Heritability of TB and Fluke is estimated 
at 9% and 1% respectively. Work is underway to derive economic values for these 
new traits to facilitate inclusion is the EBI and beef profit indexes.

Recent UK retailer research has indicated that if a consumer has a negative experience 
eating beef, it will be six weeks before they purchase beef again. These results are 
against a backdrop of declining beef consumption within the EU, compared to pork 
and chicken alternatives. To address these trends, it is necessary to develop systems 
to help improve the eating quality attributes of beef for the traits that are of value to 
consumers, most notably tenderness, juiciness, and flavour. Genetic evaluations for 
meat eating quality were launched in 2020 as part of ICBF’s participation in an industry 
backed programme called the Meat Technology Centre (MTI) which is a consortium 
involving Teagasc, Irish Universities and the Irish meat processors. The evaluations 
are based on circa 5,300 trained sensory panel phenotypes for tenderness, juiciness 
and flavour of prime cattle steaks following a standard operating procedure around 
rearing, slaughter and sensory assessment. Resulting heritability estimates (Berry et al., 
2021) ranged from 13% for flavour to 15% for tenderness. Genetic evaluation results 
are transformed to an expected satisfaction rating of the progeny from a given sire. 
The average expected rating for each trait is 80% (i.e., 80% of progeny are expected 
to have satisfactory tender, flavour or juicy score), with sires higher than this expected 
to produce progeny with superior meat-eating quality for the relevant trait. The range 
in average satisfaction values across AI sires with published evaluations (September 
2020) is 70% to 90%. While clear breed differences exist (Figure 1), of similar relevance 
is the variability in meat eating quality that exist within breeds.

Adoption of the Dairy 
Beef Index

Incorporating new 
traits

Resistance to 
Tuberculosis and 
Liver Fluke

Meat Eating Quality
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Reducing age at slaughter is viewed as a potential low hanging fruit in terms of reducing 
GHG emissions. Initial modelling suggests that if the current prime cattle kill (equivalent 
to 1.32m cattle in 2020) was slaughtered 1 month earlier than the current 802-day 
average this has the potential to remove 247 Kilotonnes of GHG from the system or 
the equivalent of not having to cull 97k cows from the National herd. Initial parameter 
estimation work suggests the trait has a heritability broadly equivalent to the current 
carcass traits but that the data needs more stringent editing to remove management 
effects related to the age of the current kill which are driven by penalties once an animal 
is killed over a certain age. 

The collection of direct methane yield in a meaningful volume is now feasible with the 
availability of the Greenfeed System (C-Lock, Rapid City, South Dakota).The ICBF 
progeny performance test centre has evaluated 670 animals to date over the last 2 
years using the Greenfeed system alongside the Insentec Feed system (Hokofarm, 
The Netherlands). Evaluation is being carried out on a range of animal’s types (steer, 
heifer, bulls) and diet types (high concentrate and mixed roughage and concentrate). In 
addition, the Moorepark Research station is actively collecting methane yield on lactating 
dairy cows at pasture using the Greenfeed systems. It is hoped that data collected 
at both centres will help to initially inform researchers of the phenotypic relationships 
between GHG emissions with diet, animal type, feed intake but as volumes grow it will 
become feasible to estimate genetic parameters and generate genetic evaluations for 
methane yield or residual methane yield. 
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Enhancing feed efficiency should improve the profitability and sustainability of dairy 
farming due to reduced use of feed and land resources while potentially reducing 
emissions of greenhouse gas (GG) per liter of milk. The selection of animals that 
are genetically superior for feed efficiency requires precise measurements of feed 
energy intake and milk energy output from enough cows to predict genetic merit for 
feed efficiency with reasonable reliability. Previously, a consortium of dairy science 
experts from North America and Europe created a pool of data including 5,000 cows 
genotyped and phenotyped for feed intake and related traits. Using this database, the 
researchers showed that dry matter intake (DMI) and residual feed intake (RFI) had 
sufficient heritability to enhance genetic progress for feed efficiency. Data from that 
study projected that the US dairy sector could save $540 million/year with maintained 
milk production by breeding for more efficient cows. The project presented herein 
was launched in 2019 to build on previous results and is the next logical step for 
implementing the selection for feed efficiency in the US and to address concerns about 
greenhouse gas emissions. Specific objectives are to:

1.	 Increase the reliability of genomic predictions for feed efficiency.

2.	 Develop a feed intake index that uses sensors to predict feed intake on individual 
cows,

3.	 Initiate a long-term program for updating genomic predictions of feed efficiency, 
and 

4.	 Determine if genomic predictions of feed efficiency can decrease methane 
emissions. 

The project protocol calls for the acquisition of data related to feed intake, milk yield 
and composition, and body weight for 42 days in 3600 mid-lactation cows (50-200 
DIM) over a 5-year period. Additionally, a subset of cows will be fitted with sensors 
to monitor body temperature, feeding behavior, and locomotion. Mid-infrared spectral 
profiles will be collected from all milk samples. Methane emission will be measured 
in 300 cows. Data collection is in progress at all research stations. These data will be 
used to develop a genomic evaluation for feed efficiency in U.S. Holsteins and support 
the development of management tools. 

Abstract
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Increases in population and consumption of dairy products will translate into a need 
for approximately 600 billion kg more milk in 2067 than is produced today (Britt et al., 
2018). This need might be constrained by environmental challenges. Scientists need to 
provide tools to farmers and their advisers to achieve their environmental sustainability 
goals in an economically viable manner. Genetic selection has yielded remarkable 
gains in the yield and efficiency in livestock production, bringing milk production of 
US Holstein cows from 5,904 to 13,015 kg/lactation in the period 1957-2019 (CDCB, 
2021), 56% of this improvement was due to genetic selection. Over this time period, 
increased focus on “functional traits” has led to a breeding goal, the Lifetime Net 
Merit index, including non-production traits, such as female fertility, calving ability, 
udder health, and longevity. Genetic selection has been revolutionized by genomic 
selection (Meuwissen et al., 2001), coupling low cost animal genotyping stored in large 
repositories housing thousands of DNA samples from dairy bulls, and milk-recording 
databases with millions of performance records from their progeny. As a result, US 
dairy farmers now carry out genomic testing on more than 90,000 calves per month, 
increasing genetic progress dramatically over the past decade (García-Ruiz et al., 
2016). Currently, the database of the US Council on Dairy Cattle Breeding (CDCB) 
contains more than 5 million dairy genotypes.

Genetic selection for higher milk production has increased efficiency of energy utilization 
in dairy cattle however, variation among cows in their ability to digest and metabolize 
nutrients and perform maintenance functions has not been exploited in genetic 
improvement programs. Residual Feed Intake (Fig 1) is a measure of the amount of 
feed energy a cow consumes each day relative to her expected energy requirement, 
computed from Dry Matter Intake (DMI), secreted milk energy, body weight (BW) and 
BW change measured over a period of time. Davis et al. (2014) and Yao (2016) showed 
that selection for RFI is feasible, and that low RFI values selection might impact feed 
costs. The key to improving feed efficiency through breeding programs is to establish 
a reference population of animals with performance data and genomic testing data. 
Reference genotypes and phenotypes can be matched with the genotypes from the 

Figure 1. Residual feed intake (Van de Haar et al., 2016)
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Figure 1. Residual feed intake (Van de Haar et al., 2016) 
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national population that have economic test results but lack performance data for feed 
efficiency, to compute genomic estimated breeding values (GEBV) (Meuwissen et al., 
2001), and hence make informed selection decisions. GEBV of new animals can then 
be calculated at birth (or on embryos), allowing greater genetic gains over a shorter 
time interval (Boichard et al., 2015). Previous studies with a 5000-cow database with 
feed efficiency phenotypes and SNP genotypes demonstrated that genomic selection 
for feed efficiency is possible and could improve dairy farm profitability (Van de Haar et 
al., 2016; Yao, 2016). The heritability for RFI has been estimated at 0.16 (Tempelman 
et al., 2015, 2020; Hardie et al., 2017; Lu et al., 2018; Li et al., 2020), showing that 
genetic selection for RFI can improve feed efficiency. The reliability for EBV has been 
estimated at 34% and 13% for phenotyped and genotyped cows, respectively. These 
low reliability values are attributed to the limited data size (Li et al., 2020). Increasing 
prediction reliability for RFI requires more feed intake data (van Raden et al., 2018). 
Preliminary analysis of genomic evaluation of feed efficiency for US Holsteins indicated 
that, calculating the range in GEBV for 16,000 sires, the top 20 % most efficient cows 
require 635 kg of feed less per lactation than the least efficient cows (bottom 20%) 
(VanRaden et al., 201; Yao, 2016) hence, RFI has economic value. The use of genomic 
selection for feed efficiency in US dairy will depend upon maintenance of a reference 
population to re-calculate marker effects and maintain GEBV accuracy. Currently, 
measures of feed efficiency, like RFI, are limited to research facilities that can determine 
individual cow feed intake, BW, body condition score, and milk energy output. Today, 
automated sensor technology is being used on many commercial dairies in the US, 
providing an opportunity to use this data for genetic improvement (Neethirajan et 
al., 2017). Sensor data, combined with biological traits like milk spectra, may allow 
development of predictive models for feed efficiency traits like RFI (Pahl et al., 2015).

Although economic benefits of selecting for improved feed efficiency are clear, the 
environmental impact is not. Enteric methane represents ~30% of US methane 
emissions from agriculture (US EPA, 2018). Predictions of cattle methane emissions are 
based primarily on DMI and are not very accurate (Ellis et al., 2010). The relationships 
between feed efficiency and enteric methane emissions in dairy cows, have not been 
sufficiently studied. Some attempts have been made to use mathematical models to 
estimate a cow’s enteric methane emissions from milk spectral data (Vanlierde et al., 
2018). Such models could allow enteric methane emissions to be estimated without 
direct measurement.

This project will allow direct selection for improved feed efficiency based on D MI data 
recorded on thousands of cows. In addition, it will allow indirect selection for improved 
feed efficiency based on predicted intakes of hundreds of thousands of cows, where 
these predictions are derived from sensors that record location, physical activity, and 
rumination data in real-time, as well as routine laboratory analyses that provide mid-
infrared (MIR) spectral data of milk samples. The impact of this project is to increase 
the efficiency and sustainability of dairy production addressing the following identified 
gaps: 1) The reliability of the GEBV for RFI is too low, 2) The cost of measuring DMI 
of individual cows is too high, and measuring individual intakes on commercial farms 
for genetic or management purposes is infeasible at present, 3) The dairy industry 
needs leadership to translate research to practice in the form of a sustainable reference 
population for feed efficiency, and 4) The relationship of RFI to overall sustainability, 
and particularly enteric methane emissions is not known. The project presented herein 
has 4 specific aims: 

1.	 to increase the reliability of genomic predictions for feed efficiency, 

2.	 to develop a feed intake index that uses sensors to predict feed intake on individual 
cows, 

3.	 to initiate a long-term program for updating genomic predictions of feed efficiency, 
and 
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4.	 to determine if genomic predictions of feed efficiency can decrease methane 
emissions. 

Ultimately, feed efficiency would be improved by including genomic breeding values 
for feed intake in the US Net Merit Index. 

A total of 3600 lactating Holstein cows will be assigned to the project for a period 
of 5 years (2019-2024) and will be studied for 42 days between 50 and 200 days of 
lactation in cohort groups (Fig 2). Only data between 50 and 200 DIM are collected in 
this project, BW is more stable within this window than outside it, minimizing errors in 
RFI determinations due to BW change. A cohort group of cows is fed the same diet at 
the same time at the same location. Diets are total mixed rations fed ad libitum. Briefly, 
Milk yields (MY), DMI, BW, Body condition score (BCS) fat (FAT%), protein (PROT%), 
and lactose (LACT%) components, and other sensor-based data  are collected from 
Holstein cows on 5 research stations: Iowa State University (ISU; Ames), Michigan 
State University (MSU; East Lansing), the University of Florida (UF; Gainesville), 
the University of Wisconsin-Madison (UW), and the USDA Animal Genomics and 
Improvement Laboratory (AGIL; Beltsville, MD) as in Tempelman et al. (2015). Body 
temperature is recorded by sensors in the vagina (iButton thermosensor) and MIR 
milk spectra are collected during the experimental period. Methane emission will be 
measured on 300 cows using a GreenFeed system (C-Lock, Inc., Rapid City, SD). 
Cows visit the system throughout the day. Only cows with more than 36 methane 
measurements taken within a 24-hour will be included in the result analysis. 

Since the beginning of the project, feed intake phenotypes corresponding to a total of 
1824 cows have been collected and added to the current CDCB feed intake database 
which contains a total 6577 records. From these records, 6,221 phenotypes of residual 

Figure 2. Experimental protocol.
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Figure 2.  Experimental protocol. 
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feed intake (RFI), from 5,023 Holsteins born from 1999 to 2017, were included in the 
official predicted transmitting abilities (PTA) for Feed Saved in Holsteins, released by 
the CDCB in December 2020. Additionally, middle infrared (MIR) milk spectral data have 
been collected from 1149 cows, and methane emission were measured in 81 cows at 
the AGIL-USDA research station. During the year 2020 the CDCB-FFAR project has 
involved 16 undergraduate students, 8 graduate students, and 3 postdocs. In terms 
of visibility and technology transfer the project has generated 2 scholarly publications, 
2 abstracts/conference presentations, 7 presentations, 3 extension trade articles, and 
various popular publications. This study is supported by the Foundation for Food and 
agricultural Research (FFAR) and the CDCB and will continue to add phenotypes to 
the US feed efficiency database until 2024. 
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Milk samples from sheep were analysed for fat, protein, lactose, somatic cell counts 
and detailed fatty acid composition. The sheep were from two lines each of 100 adult 
ewes, grazed together but differing by an average of 10% in enteric methane yield 
(g CH4 /kg dry matter intake). Milk samples were taken at 2, 4 and 6 weeks post 
lambing. Rumen fluid was also sampled for volatile fatty acid profiles and sequencing 
of the rumen microflora. There were significant differences in the rumen microbiome, 
rumen volatile fatty acids and milk fatty acid composition between the two lines. This 
suggests that the ruminant hosts have been co-selected for divergent fermentation 
profiles affecting milk composition. The next step is to explore whether milk composition 
profile in ruminants is a potential predictor of enteric methane status. These results 
have important implications for the selection of low methane emitting ruminants and 
subsequent effects on product composition.

Keywords: methane, milk, rumen, microbiome.

Around 1/3 of New Zealand’s greenhouse gases are emitted as enteric methane, a 
by-product of ruminant digestion (Mfe, 2020). Heritable individual variation in enteric 
emissions has been shown in ruminant livestock populations (Pinares-Patino et al. 
2013, Jonker et al., 2018), and selection for lowered methane emissions has been 
shown to be an effective mitigation tool in sheep (Pinares-Patino et al., 2013). As 
enteric methane is produced during the fermentation of ingested feed to energy sources 
for the animal, this selection against methane production has been associated with 
different microbial populations in the gut and differing amounts of volatile fatty acids in 
rumen outflow (Jonker et al., 2019, 2020). Sheep selection lines exist that have been 
bred divergently for 3 generations creating two divergent lines that differ in methane 
emissions by approximately 11% (Rowe et al., 2019). Because these sheep selection 
lines that are divergent for methane emitted per kg DMI also differ in fermentation 
energy sources to the animal, and in rumen microbial composition, we hypothesised 
that synthesis of milk fatty acids and therefore milk composition may also vary.

Abstract

Introduction
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Ewes To create the selection lines, the 100 lowest emitting and the 100 highest 
emitting ewes and the 10 lowest and 10 highest emitting sires were selected from an 
initial population of 1000. Lines were closed and selected over 3 generations for high 
and low enteric methane emissions (CH4) per kg of dry matter eaten (DMI) to attain 
an average of 11% difference. Ewes from both lines were grazed together on a mixed 
ryegrass-clover pasture.

Milk At 3 time-points post lambing, at 2-weekly intervals starting 2 weeks after the first 
ewe lambed, all ewes were taken off pasture at 8am. Lambs were removed and after 
one hour a milk sample was collected from each ewe. The foremilk was discarded and 
a mixed sample of ~25ml was collected from both teats. A 5-ml sample of milk was 
processed, and the fatty acids measured as methyl esters, using gas chromatography 
as described by Agnew et al. (2019). The remaining 20ml was sent to the LIC testing 
laboratory (Christchurch, NZ) for standard herd test profiling of fat, protein, lactose 
and somatic cell count. 

Rumen Fluid. Within 30 min of milking, a 30-ml rumen fluid sample was collected 
via stomach intubation. Short chain fatty acid analysis was carried out using a 2-ml 
subsample, as described by Attwood et al. (1998). The remainder was snap-frozen 
and freeze dried prior to DNA extraction and microbial sequencing as described by 
Hess et al. 2020.

Methane All selection line ewes were measured for methane emissions through 
portable accumulation chambers (Jonker et al., 2018) at 4 and 6 weeks post lambing. 
Breeding values for each ewe were estimated to ensure that differences were retained 
in early lactation.

Analysis Data were analysed using univariate linear mixed models. Models (1) and 
(2) were fitted for each trait using ASREML v4.1 (Gilmour et al. 2015). 

y = µ + cdat*bg + age + nll + lwt + line + pe	 (1)

y = µ + cdat*bg + age + nll + lwt + M		  (2)

where 

y is the trait of interest, cdat is the collection date of the sample, bg indicates if the ewe 
lambed late or early, age is the ewe’s age (years) at sampling, nll is the number of live 
lambs, lwt is the ewe’s live weight (kg) at sampling, line is the methane line (low or 
high), pe is the permanent environment random effect, and M is the reference-based 
microbial relationship matrix computed as described by Hess et al. (2020). Model (1) 
was fitted to investigate the effect of selection line on each trait while Model (2) was 
fitted to estimate the microbiability (proportion of variance explained by the rumen 
microbial profile).

Average milk constituents for the two selection lines from a standard milk test are given 
in table 1. No significant differences were found between the high and low methane 
selection line sheep for total fat, total protein or lactose. Significant differences were 
reported for somatic cell count and for methane breeding value. There were no obvious 
reasons why the low line sheep should have higher somatic cell counts. Udders were 
in good condition with no signs of infection. Sheep had been grazed together since 
immediately post mating. The low line sheep have been previously shown to have 
greater parasite resistance (Rowe et al., 2019). This may suggest potential differences 
in immune status. 

In contrast to the non-significant differences in total fat percentage, there were clear 
differences in individual milk fatty acids analysis between the selection lines (Table 2). 

Methods

Results and 
discussion
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In particular, medium chain fatty acids were lower in the low methane emitting sheep, 
and polyunsaturated fatty acids were higher. There was also a significant difference 
between the lines in iso C14 and anteiso C15 and C14:1 (Table 2). The relationship 
between rumen fermentation, bio-hydrogenation and the presence of odd and branched 
chain fatty acids in milk was reviewed by Vlaeminck (2006). These iso and anteiso acids 
in the milk might be related to the ruminal iso volatile fatty acids (Table 3). Regardless 
of whether this is the case and they are from de novo synthesis in the rumen or derived 
from propionate in the mammary gland, they warrant further investigation as potentially 
important predictors in milk. 

Table 3 reports differences in the volatile fatty acids measured in rumen fluid of the lines. 
In particular, there were differences in acetic acid and in the ratio of acetic to propionic 
acids. Propionate dominated fermentations are often associated with lower methane 
emissions due to lower hydrogen production. Similar results were reported by Jonker 
et al. (2020). Table 4 shows the variance explained by the rumen microbes present, 
which was estimated using the microbial relationship matrix M in model 2. There is a 
clear link between the microbial community composition obtained by sequencing and 
described by Hess et al.(2020), and the fatty acids found in the milk and the volatile 
fatty acids in the rumen. Next steps are to measure methane emissions from animals 
identified with divergent profiles and to explore the impact that changes in fatty acid 
composition of milk may have on neonatal nutrition and product processing.

Table 1. Average milk constituents of high and low selection line sheep. 
 

 Low High P-value 
Fat (%) 5.07 5.00 0.910 
Protein (%)  5.04 5.14 0.169 
Lactose (%) 5.79 5.78 0.451 
Total solids (%) 16.28 16.28 0.797 
Somatic cell count ,000  260 182 <0.001* 
Methane yield g/kg DMIbreeding value −1.22 +1.14 <0.001* 
*Significant at 5% threshold. 
 
 
Table 2. Fatty acid composition of milk from high and low selection line sheep. 
 

Fatty Acid (%) Low − High % Diff from high P-value 
iso C14   0.009  8.2 <0.001* 
C14:0  −0.199 −2.6 0.218 
iso C15   0.008  3.2 0.077 
anteiso C15 +C14:11  0.022  4.0   0.021* 
C16:0  −0.455 −2.6   0.024* 
C18:1 t9   0.012  4.8   0.036* 
C18:1 t11   0.613  8.7   0.001* 
C18:1 c11   0.032  9.7   0.018* 
C18:2 n6   0.082 13.0 <0.001* 
C18:3 n3   0.176 17.3 <0.001* 
C20:0  −0.006 −5.0   0.008* 
CLA   0.255 10.9   0.001* 
SFA2 −1.220 −2.8 <0.001* 
PUFA3  0.512 12.9 <0.001* 

1Antesiso C15 and C14:1 could not be separated in the spectral analysis and are reported 
together. 
2SFA = saturated fatty acids = C12:0 + C14:0 + C15:0 + C16:0 + C17:0 + C18:0 + C20:0. 
3PUFA = polyunsaturated fatty acids = CLA + C18:2 n6 + C18:3 n3. 
*Significant at 5% threshold 
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Table 3. Volatile fatty acid (VFA) profile of rumen fluid. 
 

Rumen VFAs Low − High % Diff from high P-value 
Concentrations    
    Acetic (mM)  −4.423 −7.9   0.009* 
    Butyric (mM)  −0.555 −7.0 0.060 
    Caproic (mM)    0.013 6.1 0.243 
    Isobutyric (mM)  −0.106 −9.4   0.012* 
    Isovaleric (mM)  −0.124 −10.2   0.030* 
    Propionic (mM)  −0.837 −5.2 0.122 
    Valeric (mM)  −0.062 −6.5 0.113 
Total(mM)  −4.423 −7.9   0.009* 
Proportions1    
    Acetic   −0.4 0.346 
    Butyric   −0.8 0.073 
    Caproic  4.6   0.013* 
    Isobutyric  −1.5 0.282 
    Isovaleric  −2.1 0.261 
    Propionic  1.1   0.003* 
    Valeric  −0.3 0.733 
Ratios    
    Acetic/Propionic  −0.102 −2.9   0.012* 
    (A + B)/(P + V)2 −0.104 −2.7   0.009* 

1Proportions were log transformed to satisfy assumptions of homogeneous variance 
when fitting the models.  
2(A + B)/(P + V) = (Acetic + Butyric)/(Propionic + Valeric). 
*Significant at 5% threshold 
 
 
Table 4. Proportion of variance of milk fatty acids (FA) and volatile fatty acids 
(VFA) explained by the rumen microbial profile.  
 

Milk FAs (%) Variation 
explained 

Rumen VFAs (%) Variation 
explained 

iso C14  0.13 ± 0.05 * Proportions  
C14:0  0.07 ± 0.04 Acetic 0.30 ± 0.07 * 
iso C15  0.10 ± 0.04 * Butyric 0.34 ± 0.06 * 
anteiso C15 + C14:1 0.10 ± 0.05 * Caproic 0.23 ± 0.06 * 
C16:0  0.11 ± 0.04 * Propionic 0.28 ± 0.07 * 
C18:1 t9  0.09 ± 0.05 * Valeric 0.34 ± 0.07 * 
C18:1 t11  0.28 ± 0.06 * Ratios  
C18:1 c9  0.16 ± 0.05 * Acetic/Propionic 0.26 ± 0.06 * 
C18:1 c11  0.13 ± 0.05 * (A + B)/(P + V) 0.26 ± 0.06 * 
C18:2 n6  0.17 ± 0.06 *   
C18:3 n3  0.26 ± 0.07 *   
C20:0  0.14 ± 0.05 *   
CLA  0.25 ± 0.06 *   
SFA 0.16 ± 0.05 *   
PUFA 0.31 ± 0.07 *   

*Greater than 2 standard deviations above zero. 
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The impact of the pregnancy stage of dairy cows on milk yield, milk fat and milk protein 
content is well known. During the last decade researchers underlined the possibility of 
spectral predictions of pregnancy stage due to the detailed milk composition which can 
be approached thanks to the Mid-infrared (MIR) spectroscopy. MIR is using the infrared 
light from the electromagnetic spectrum which shows specific absorption patterns, 
when sent through a milk sample caused by frequency dependent interactions with the 
chemical bonds of the chemical milk components. MIR is a non-expensive and routinely 
used method for major milk components and also for fine milk composition analysis. 
One of the outcomes from those researchs was the proposed use of MIR pregnancy 
tools for choosing the better insemination period. The results were indicating that at 
the beginning of the pregnancy some areas of the MIR spectra were more specifically 
affected, than the absorption patterns of the fat or protein content. The aim of this paper 
is to study the impact of the energy balance (EB-NEL) at the insemination day and to 
underline the economic loss based on milk MIR spectra predictions. The objective was 
to show, that it is possible to help milk recording organization advisors to use EB-NEL-
based MIR milk spectra predictions not just in health issues, but also in choosing the 
right insemination period. It was observed that this approach could be used for further 
studies aiming to develop MIR strategies based on EB-NEL for management strategies 
for improved insemination success and the reduction of fertility economical loss.

Keywords: Fertility, insemination management, energy balance, mir milk spectra, dairy 
cow, dairy farming, controlling.

Mid Infrared (MIR) spectroscopy is using the infrared light from the electromagnetic 
spectrum which shows specific absorption patterns when sent through a milk sample 
caused by frequency dependent interactions with the chemical bonds of the chemical 
milk components. With the help of milk MIR spectra, a wealth of information can be 
obtained by establishing relationships with reference methods. MIR is a non-expensive 
and routinely-used method for major milk components and also for fine milk composition 
analysis. During the last 15 years different researchers were developing new calibration 
models with the help of milk MIR spectral data linked to milk main components such as 
fatty acids (Grelet C. et al. 2014) or minerals (Soyeurt H. et al. 2009), milk biomarkers 
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such as ketone bodies (Grelet C. et al. 2016) in milk, inflammation indicators or 
complex components such as blood components (BHB, NEFA, Glucose, IBF1, 
Insulin, Calcium) (Dale et al. 2020) and traits like energy balance (NEL and ME) 
(Dale L. et al. 2019). At Regional Association for Performance Testing in Livestock 
Breeding of Baden-Württemberg (LKV B.W.), due to the collaborations with German 
Association for Quality and Performance Testing e.V. (DLQ) and optiKuh Consortium, 
data from feeding and breeding experiments from the 12 optiKuh research farms, 
together with spectral data was used to perform MIR calibrations based on energy 
balances NEL (GfE, 2001) and ME (Susenbeth, 2018). The models were robust 
and statistical accurate and can be used for rough screening (Dale et al., 2019). 
Moreover, in the last decade the research focus was on the proposal of using milk 
MIR spectral data for predictions of pregnancy information into tools that could give 
the information to the farmer if a cow is open or pregnant. In the early 2013 a Belgian 
team has developed a first model based on MIR standardized spectral data and 
pregnancy information. Laine et al., (2015) was the pioneer study, trying to build a 
model based on open and pregnant cows with the help of MIR spectral data. The 
results showed that there is a strong link between the pregnancy and the lactation 
stage. Also, the Bavarian team (Kammer et al., 2015) tried to build a model in late 
lactation stage but was unsuccessful. Laine et al., (2017) pointed out, that for some 
specific wave numbers of the milk MIR spectrum the relative effect of pregnancy is 
higher than on fat and protein content at the beginning of the pregnancy stage. In 
2020, an Australian team (Dehlez et al., 2020) tried to develop a similar model as 
the Belgium team with the result, that in the first 100 lactation days it is not possible 
to see a difference between open and pregnant cows. Meanwhile, a Scottish team 
developed a deep learning model, where the cow pregnancy status was predicted 
using MIR spectral data (Brand et al., 2021). Unfortunately, until now no researcher 
found a proper model to be useful for the Milk Recording Organization as a working 
tool of the monthly milk recording. For dairy farmers a large economic loss is caused 
by fertility issues. An early identification of pregnant cows could be a key element for 
the improvement of reproductive performances and reduction of economic losses. It 
is well known that the veterinary services cost is varying from 30€ to 90€ per day and 
depending on the issues in the farm the costs are increasing. Also, the insemination 
costs by veterinary are ranging from 15€ to 35€ per cow depending on the quality of 
insemination material, while the insemination costs by farmer are between 12€ and 
20€ per cow for work plus 6€ to 20€ for insemination material. Seen all this information 
it was decided to explore what was wrong at the insemination day and to try to have 
a better insemination rate. The objective of LKV B.W. is to help dairy farmers with the 
close monitoring of their dairy cows, including the detection of fertility problems using 
EB-NEL predictions. The aim of this study was to see the influence of pregnancy 
stage in the spectral data and also the impact of the EB-NEL at insemination day and 
to underline the economic loss due to multiple inseminations. The objective was to 
show, that it is possible to help milk recording organization consultants and advisors 
to use EB-NEL-based MIR milk spectra predictions not just in choosing the proper 
feeding ration or healthy issues but also in choosing the right insemination period. 

From the LKV BW cattle database about 288 dairy farms were selected. The selected 
farms are taking part in the health monitoring program “GMON Rind BW”. The data 
covered the complete years of calving period and the variability of days in milk for 
the population. The selection milk samples covered a complete period of 6 years 
and considered the relevant breeds Holstein, Simmental and Brown Swiss as well 
as the season variability. For this study indicator data and insemination data was 
combined together, followed by adding the veterinary diagnosis information to the 
selected data. Once the data was prepared the spectral data for the selected milk 
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Figure 1. Pearson Correlations comparing open versus pregnant cows.

recording samples was added. All milk recording data from LKV B.W. is analyzed on 
Bentley Spectrometers. The spectral data set was first standardized by applying the 
OptiMIR/EMR method (Grelet et al., 2015) and pre-processed by Savitzky-Golay first 
derivative to remove the offset differences between samples for baseline correction, 
before performing Legendre polynomial modeling. To identify the main variables 
that were positively or negatively associated with pregnancy information a Pearson 
correlation analysis with all MIR predictions available at EMR level but also at LKV 
B.W. was performed using the “corrplot” R package (Figure 1.).In order to identify 
the pregnant and open cows it was applied first the definition code for the pregnancy 
status such as: code 0 = non-pregnant, code 1 = pregnant because of calving date 
registration and official insemination date within the 9 months period and code 2 = 
open because of multiple inseminations. The 212 OptiMIR wave numbers of spectral 
data were used for the comparison between the pregnancy statuses (Figure 2.). Then 
pregnancy status data were combined with EB-NEL data. 

The first results were indicating that at the beginning of the pregnancy some areas 
of the MIR spectra were more specifically affected than the absorption patterns of 
the fat or protein content. Due to the Pearson correlations, itcan be observed in the 
Figure 1, that the EB-NEL is affected the most comparing open versus pregnant cows, 
showing positive correlations 0.53. Similar results in Pearson correlation were obtained 
for EB-NEL during the lactation stage varying between 0.50 and 0.85 for Holstein 
and Simmental cows respectively (Becker et al. 2021).Inversely, the long chain fatty 
acids (LCFA) were negatively correlated with -0.53. As described in literature positive 
correlations with pregnancy status could be found for protein, blood insulin, glucose, 
calcium, IGF1, fatty acids such as C10, C12 and De-Novo, EB-ME as well as all 
minerals such as calcium, magnesium, phosphor and potassium. Negative correlations 
could be found for energy corrected milk (ECM), fat to protein ratio (FEQ), Natrium, 
fatty acids such as C17, C18 and Preformed, as well as Ketosis indicators like BHB 
and NEFA in blood and milk.
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Figure 2. Spectral differences of cows after 2nd insemination between not-pregnant, open (not 
successful insemination) and pregnant data at 22-56 days in milk (DIM)

Figure 2. Spectral differences of cows after 2nd insemination between not-pregnant, open (not successful 
insemination) and pregnant data at 22-56 days in milk (DIM) 

After seeing these positive and negative correlations the question came up whether 
there are differences in the spectral data during early lactation between open and 
pregnant data before and after insemination as well. Since, as described before, 
there is no possibility to detect with the spectral data differences between the status 
pregnant or not pregnant during the first 100 days in milk (DIM) it was decided to perform 
more statistical analysis in order to check if the spectral data are different. Especially 
differences in the first 4 lactation weeks, in the first 28 DIM and also in the weeks 4 
to 8, from 29 to 56 DIM were of interest (Figure 2.). As the Belgian team in the 2017 
explained, that the lactation stage can be seen in milk MIR spectral data, from our study 
it can be confirmed, that there are visible differences between pregnant and open cows 
before and after insemination. The green color is showing not pregnant data before 
being inseminated and the red one are the cows after insemination. Figure 2shows 
cows with 2nd insemination comparing data from 4th and 8th lactation week, between 22 
and 56 DIM. Green spectra are from cows before insemination, red spectra are from 
cows with successful inseminations and there is blue color, that appears for spectra 
of open cows after an unsuccessful insemination. It was also confirmed that cows with 
3rdinsemination compared with cows from the 5thand 9thlactation week, between 36 
and 63 DIM, could be distinguished as open and pregnant cows after insemination.

After analyzing the spectral data and after observing the influence of the EB-NEL in 
the Pearson correlation, the EB-NEL influence at insemination day was analyzed. It 
can be underline that there were differences between spectral data after insemination, 
and it can be distinguished between pregnant and open cows during the first 90 DIM. 
The EB-NEL MJ/day was first predicted for all farms and afterwards differentiated by 
primiparous and multiparous cows. In Figure. 3 can be seen the mean value of the ECM 
and the EB-NEL in MJ/day. This differences between open and pregnant cows after 
inseminations were also studied per breeds and insemination numbers (Table 1). This 
response may be explained because high ECM dairy cows use a great deal of energy 
to cope with the marked increase in ECM at the beginning of lactation. This increased 
energy requirement is partially met by increased feed intake but at a slower rate than 
milk production; and by retrieval of body energy reserves which results in cows with 
a negative EB-NEL (Gomez et al., 2018). It can be seen in the Table 1 that at the 1st 
insemination for all the farms the EB-NEL was positive for the pregnant cows while for 
the open cows it was negative.

It can also be underlined that there are differences between the breeds by regarding 
all farms or individual Holstein (HOL), Brown-Swiss (BSW), Simmental (SIM) farms. 
For the reason of better comparison, individual farms of each breed were selected 
having a similar feeding and husbandry system. In the case of HOL farms the 1st 
insemination was always after 7 till up to 10 lactation weeks (WIM), showing that the 
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Figure 3. Mean ECM (kg/day) and EB-NEL MJ/day by primiparous and multiparous and open and 
pregnant cows in different lactations

herd manager has chosen a late insemination period. Therefore, the EB-NEL MJ/day 
has been analyzed and by comparing open versus pregnant cows after insemination in 
the first 10 weeks of lactation, it can be seen, that the EB-NEL is lower in the later ones. 
Pregnant cows had a higher net energy level (EB-NEL) as expected. In general, low 
pregnancy rates in dairy cows of actual breeding lines are expected due to excessive 
milk production. For the open cows after the 1st insemination, it can be seen, that 
the EB-NEL was less than -10 MJ/day and is consistent with published studies in 
this field (Gomez et al., 2018). In the case of BSW farms it can be seen, that at the 
1st insemination in comparison with HOL farms the EB-NEL is higher and still open 
cows after the 1st insemination have EB-NEL -2 MJ/day, while the pregnant cows 
have more than 15 MJ/day EB-NEL. In the case of SIM farms in comparison with all 
other farms the EB-NEL for the open cows after the 1st insemination was almost -17 
MJ/day, while for the pregnant cows was more than 9 MJ/day. The negative EB-NEL 
leads normally to a decrease in body condition score at calving and an increased 
level of beta-hydroxybutyrate, which could lead more likely to a delay of the first 
ovulation (Torres et al., 2019). Torres et al., 2019 found out, that cows with energy 
deficit are slow to ovulate and show a reduced conception rate to first service or have 
an increased probability of abortions and an increased calving to conception interval. 
In the case of 2ndinseminations, the ECM of open cows was higher as for cows that 
were successful inseminated and the EB-NEL for the HOL cows was lower for open 
cows after insemination as for the cows successful inseminated, the EB-NEL was lower 
than -11MJ/day for open cows and for the successfully inseminated cows was bigger 
as 9MJ/day, while the SIM cows was less than -20 MJ/day for open cows and for the 
successful inseminated cows was bigger than 10 MJ/day. In the case of BSW cows the 
EB-NEL for open cows was less than 2 MJ/day while for the successful inseminated 
was bigger than 17 MJ/day. In the case of cows with 3rd inseminations, the EB-NEL 
was lower for open cows than for cows that are successful inseminated, HOL: -11 vs. 
9, BSW:-2 vs 18and SIM: -18 vs.12 MJ/day. Regarding the differences between the 
breeds, it can be notified, that open cows of the SIM are showing the lowest EB-NEL 
values at 1st insemination. It can be stated, that the SIM breed has therefore a better 
tolerance for a deficient energy level and can compensate better, than the other two 
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breeds with respect to fertility rates. This high tolerance is also visible at the 2nd and 
3rd insemination. After checking this difference, it has been observed that the EB-NEL 
MJ/day was different for animals that were open after the inseminations (1st, 2nd or 
3rd). The EB-NEL was different also between breeds and it can be seen that there 
were 2.8 % of the open BSW cows were around 0 EB-NEL in MJ/day while SIM and 
HOL cow had more than 4%. Also 12% of this BSW cows were open and had an EB-
NEL in MJ/day more than 25 while SIM and HOL just 4.4% and 4.9%. The EB-NEL 
was also different in between breeds at the insemination period (Table 2). Table 2 
indicates that open cows were in more than 50% in the 4th energy level (between 
0 >—<25), thus in most cases they have been at a good energy level: But is is also 
showing, that for SIM this level was lower than for the other breeds, while in case of 
a negative EB-NEL the percentage in SIM was in total higher, than compared to the 
other breeds. This underlines again the finding of the SIM breed being more tolerant 
to a high variability in the energy level and showing a more constant fertility, than the 
other breeds in case of a decreased EB-NEL.

To conclude it could be notified that these results confirm findings of the literature 
described above. This results also confirm differences in tolerance of EB-NEL levels 
with respect to fertility rates between breeds. The study underlines the importance of 
checking the EB-NEL level of the animals before performing an insemination. It was 
observed that this approach could be used for further studies, aiming to develop alarm 
systems based on MIR predictions of EB-NEL MJ/day for management strategies and 
to improve the success of inseminations and to reduce respective financial losses. 
The future developments that could be carried out at all levels are: optimizing the 
insemination period at farm level by selecting the EB-NEL, reports and applications 
for efficient insemination period, MIR-based applications for reducing economic losses 
based on fertility rate.

The EB MJ NEL work was part of the collaborative project optiKuh, funded by the 
German Federal Ministry of Food and Agriculture. The EB MJ NEL spectral equation 
development was funded by the German Association for Quality and Performance 
Testing e.V., Bonn, Germany. 10 years (2011-2021) of spectral standardization. 
This work was concepted by CRA-W, founded by OptiMIR project with the support of 
INTEREG IV B and it is under enhancement and continuous development of EMR-EEIG.
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Enhancing metabolic monitoring during early lactation 
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Monitoring the metabolic situation of cows during early lactation is an important part 
of herd management. One parameter is the occurrence of hyperketonemia - defined 
as the concentration of beta-hydroxybutyric acid (BHBA) in blood above a certain 
threshold, e.g.  >1.2 mmol/l. Another indicator for risk of hyperketonemia from milk 
analysis is the fat-protein-ratio in milk. Blood BHBA with a threshold of >1.2 mmol/l and 
a fat-protein-ratio with values >1.5 indicating risk of hyperketonemia were combined 
to one reference.

This combined reference was used to build a linear discriminant analysis (LDA) 
prediction model on milk mid-infrared (MIR) spectral data and information about the 
cow. The model predicts the risk of hyperketonemia expressed in three alert levels: 
Green (Low risk), yellow (medium risk) and red (high risk).

Recent research has shown that BHBA in blood is not the only important indicator for 
metabolic stress in early lactation. The proposed separation values for non-esterified 
fatty acids in blood (NEFA) of <0.39 mmol/l and >0.7 mmol/l were used to create a 
reference with three classes of low, medium and high risk of poor metabolic adaptation. 
An LDA model with milk MIR-spectra and cow information and this reference was built.

Farmers in Bavaria are provided with information from both models for cows in the 
first 50 day of the lactation with the report for each herd test day. This system helps 
farmers to detect potential problems and allows to intervene earlier.

New reference data for the three breeds Simmental, Brown Swiss and Holstein has 
recently become available from the Q Check project (q-check.org) and further data 
collection in Bavaria. This provided the opportunity to enhance the original models 
and to better evaluate their performance.

Keywords: FTIR spectra, metabolic monitoring, prediction model.

Milk testing by a Dairy Herd Improvement Association provides the farmer with the 
fat-protein-ratio (FER) as a basic tool to evaluate the metabolic situation of dairy cows. 

Introduction
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Materials and 
methods

Availability of the MIR spectra for milk samples gives the opportunity to look into models 
which use more information as predictors for dangerous metabolic situations of dairy 
cows. The focus of our research was on the early lactation, i. e. 5 to 50 days in milk.

Two references were used: The concentration of for non-esterified fatty (NEFA) acids 
in blood and the concentration of beta-hydroxybutyric acid (BHBA) in blood combined 
with the FER. Blood samples were used because they are a reliable analytic standard.

High NEFA values are associated with the body fat mobilization due to negative energy 
balance and are often a precursor for hyperketonemia. Research also shows that high 
NEFA levels alone are an indicator for dangerous metabolic stress (Tremblay, 2018).

Since 2019 Bavaria uses a dual traffic light warning system with an early warning based 
on the NEFA reference and alerts based on the combined BHBA and FER reference.

This paper compares the initial models with the new models based on a much larger 
dataset.

Blood and milk samples were collected weekly from 5 to 50 days in milk (DIM). The 
initial dataset contains data from 26 farms. 359 Simmental cows, 1038 with samples 
collected 2015-05-05 to 2016-02-11. Two projects collected data using the same 
protocol: Q Check (2018-01-02 – 2018-12-20) and Metalarm (2019-10-14 – 2021-02-
18).  A new dataset combined all data from 103 farms, 4058 Simmental, Holstein and 
Brown Swiss cows and 16923 samples in total. 

Milk samples were analyzed on FOSS MilkoScanTM Analyzers (FOSS GmbH, Hamburg, 
Germany) at the Bavarian Association for raw milk testing (Milchprüfring Bayern e.V.).

Blood samples were analyzed at the laboratory of the Clinic for Ruminants in 
Oberschleissheim for BHBA and NEFA.

For the NEFA models reference classes were low (green NEFA <0.39 mmol//l), medium 
(yellow, 0.39 < NEFA < 0.7 mmol/l) and high risk (red, NEFA >0.7 mmol/l), For the 
BHBA/FER model reference classes were low (green, BHBA <1.2 mmol/l and FER 
<1.5), medium (yellow, BHBA >1.2 mmol/l or FER >1.5) and high risk (red, BHBA >1.2 
mmol/l and FER >1.5).

MIR-spectra were restricted to wavenumbers 980 – 1580, 1728 – 1800 and 2810 – 2980 
cm.1 to eliminate water signals and remove areas with no or redundant information. All 
spectra were offset corrected. For the BHBA/FER model the dataset was balanced for 
the reference classes with the ROSE algorithm (Menardi, 2014).

Linear Discriminant Analysis was selected as method and model quality was assessed 
using 10 fold cross validation. All samples from each farm were assigned to the same 
fold. The cross validation was run 10 times with random assignment of the data to the 
folds. For assignment of the predicted classes the a posteriori probability to belong to 
the green reference class with custom thresholds was used.

There is a large difference in the observed prevalence for the red NEFA reference, 
while the observed prevalence for the BHBA/FER classes are about the same in the 
initial and new dataset (Table 1). There are also distinct differences in the overserved 
NEFA reference prevalence for the breeds in the new dataset, while the differences 
in the BHBA/FER reference prevalence are much smaller (Table 2).
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Percentage of red 
status messages per 
month

Table 1. Observed prevalence for the reference classes in the datasets. 

NFEA Reference BHB/FER Reference 
Initial Dataset New Dataset Initial Dataset New Dataset Reference 

Class Samples % Samples % Samples % Samples % 
Green 551 53 13038 78 782 75 12514 74 
Yellow 277 27 2671 15 214 21 3708 22 
Red 210 20 1214 7 42 4 701 4 
All 1038  16923  1038  16923  
 

Table 2. Observed prevalence for the NEFA (left) and BHBA/FER reference (right) classes in the new dataset for 
each breed. 

 
NEFA Reference BHBA/FER Reference 

Ref. Class Simmental Holstein Brown Swiss Simmental Holstein Brown Swiss 
Green % 70 83 86 74 73 78 
Yellow % 19 13 11 22 24 18 
Red % 10 5 3 5 3 4 
Samples 8604 6076 2243 8604 6076 2243 

 

Final model quality was evaluated using the percentage of correct predictions for the 
green reference class (prediction and reference green) and the percentage of the 
false red predictions (prediction red and reference green). We think these are the most 
important measures for the farmer because the farmer sees the predictions and not 
the references and needs to get an idea how reliable the predictions are.

The NFEA models build with the new dataset shows an improvement in the correct 
green status messages and a worsening in the false red status messages compared 
with the evaluation of the initial models. There are clear differences between breeds 
although breed specific thresholds were used.

For the BHBA/FER there are only minimal changes and the quality is the almost the 
same across breed due to the breed specific thresholds.

The following results use status message instead of predicted class/predictions. The 
figures show the percentage of red status messages for each month from 2019 to 2020 
with the initial models on the left and the new models on the right.

To investigate the connection between status messages and culling the last milk testing 
day with status messages was used with a mean day in milk of 33. Culling within 30 
days after the testing date counted towards the culling rates in Table 6. For evaluation 
of significance the table includes 99.9 % confidence for the culling rate.

Status messages and 
culling rate
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Figure 1. Percentage of red status messages of the NEFA model for each month 2019 ‑ 2020, initial 
model left and new model right.

Table 3. Probality thresholds and percentages of correct status messages for the NEFA model 
 
 Samples Reference green % Reference yellow % Reference red % 
Predicted Class Simmental initial dataset (yellow < 80 %, red < 5 %) 
Green 503 73 21 6 
Yellow 401 41 32 27 
Red 134 13 33 53 
 Simmental new dataset (yellow < 77 %, red < 16 %) 
Green 6122 85 13 2 
Yellow 1277 50 35 15 
Red 1205 20 36 44 
 Holstein new dataset (yellow < 77 %, red < 10 %) 
Green 5026 92 7 1 
Yellow 635 51 36 13 
Red 415 21 40 40 
 Brown Swiss new dataset (yellow < 67 %, red < 4 %) 
Green 1924 92 7 1 
Yellow 224 53 35 12 
Red 95 25 46 28 
 

Table 4. Probality thresholds and percentages of correct status messages for the BHBA/FER model. 
 
 Samples Reference green % Reference yellow % Reference red % 
Predicted Class Simmental initial dataset (yellow < 38 %, red < 5 %) 
Green 756 93 6 0 
Yellow 179 42 50 8 
Red 102 0 73 26 
 Simmental new dataset (yellow < 29 %, red < 3 %) 
Green 6352 94 6 0 
Yellow 1863 26 65 9 
Red 389 0 65 35 
 Holstein new dataset (yellow < 30 %, red < 2 %) 
Green 4433 95 5 0 
Yellow 1431 17 76 7 
Red 212 0 69 31 
 Brown Swiss new dataset (yellow < 37 %, red < 7 %) 
Green 1734 94 6 0 
Yellow 328 30 59 11 
Red 181 0 65 35 
 

Figure 1. Percentage of red status messages of the NEFA model for each month 2019 – 2020, initial model left and 
new model right. 



105

ICAR Technical Series no. 25

Kammer et al.

Figure 2. Percentage of red status messages of the BHBA/FER model for each month 2019 – 2020, initial model 
left and new model right.

Discussion 

Figure 2. Percentage of red status messages of the BHBA/FER model for each month 2019 – 2020, initial model 
left and new model right. 

Table 5. Last status messages with the new models for each cow 2019-2020 and culling within 30 days. 
 

NEFA BHBA/FER 
Status message Cows % CI 99.9% Cows % CI 99.9% 
Green 989350 2.6 2.6 – 2.7 896576 2.8 2.8 – 2.9 
Yellow 141826 3.4 3.2 – 3.6 213425 2.9 2.8 – 3.0 
Red 84972 8.4 8.1. – 8.7 106147 6.1 5.8 – 6.3 
All 1216148 3.1 3.1 – 3.2 1216148 3.1 3.1 – 3.2 
 

The NEFA model needed more adjustment than the BHBA/FER model. For all breed 
more red status messages than seem necessary were generated. Both effects can be 
explained by the large differences in observed prevalence. Another effect is a much 
less variation in the percentage over time with the model based on the new dataset. 
The changes in the percentage of red status messages of the BHBA/FER show the 
necessary adjustment for the different breed. The initial models generated more red 
status messages than seems necessary considering the new data, but not excessively 
so. As the status messages from the NEFA model were promoted as early warning 
we expect little impact on the farmer.

Looking at culling after the last status messages shows a significantly increased culling 
rate for cows with red status messages which indicates a connection between the 
metabolic status predicted by the models and culling.

New data improves our models and because of the changes in the observed prevalence 
also drives our model evaluation. We think that the percentage of correct predictions/
status messages is a good final evaluation measure because it gauges what the farmer 
will see at makes it easier to communicate. In the near future we will evaluate new 
model algorithms to replace linear discriminant analysis.

Conclusion
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In 2019, dairy market was valued at more than $ 600 Billion, and it is projected to 
exceed 1 trillion $ by 2024, making it one of the largest food sectors worldwide. 
Milk is also considered one of the most foods consumed worldwide. Therefore, milk 
composition and quality are two crucial factors to be measured. Milk components 
are measured by various technologies; most common is ultrasonic in addition to 
spectroscopic techniques like MIR technology. The issue with these two techniques are 
mainly accuracy in case of ultrasonic and very high price in case of MIR spectroscopy. 
In this work, the robustness and efficiency of the chip-size, low cost near-infra red 
sensors NeoSpectra® to accurately determine the milk components are demonstrated. 
Compared to other competing technologies in the market as well as some benchtop 
instruments, NeoSpectra is showing a much better performance and exceeding ICAR 
on farm standards and even close to lab standards. 

The prediction models are built using cow milk taken from various regions/herds. 
110 raw, fresh cow milk samples were collected from 3 different breeds and 5 different 
herds. Chemical analysis for fat, protein and lactose is performed using official methods 
of analysis of AOAC international 19th edition. Milk measurements using NeoSpectra 
sensors are collected using milk samples in off the shelf glass beakers and milk is 
filling at least 1 cm from the bottom of the beaker. 

As a summary of the results, fat is measured using NeoSpectra sensors and prediction 
models with a coefficient of determination (R2 = 0.984) and (RMSE=0.158) and testing 
results (R2=0.991, RMSE=0.167, SD (standard deviation) =0.147). Protein is measured 
with (R2 = 0.891) and (RMSE=0.078) and testing results (R2=0.979, RMSE=0.127, 
SD=0.131). Lactose is measured with (R2= 0.818) and (RMSE=0.105) and testing 
results (R2=0.767, RMSE=0.111, SD= 0.114). These results show that NeoSpectra 
sensors and prediction models surpassed ICAR’s standard for on farm analyzer which 
requires SD (standard deviation) = 0.25 for fat, protein and are very close to ICAR’s 
standard for lab analyzer which requires SD = 0.1(1, 2). 

In conclusion, the NeoSpectra® NIR sensors showed the ability to enable low cost milk 
analyzers that not only complies with ICAR standard for on-farm milk analyzers, but also 
exceeds it to a performance level that is very close to ICAR lab analyzer requirements. 
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Introduction By 2050 the world population is expected to grow to 9.8 billion according to the UN, 
with that fast-growing population the demand for securing a continuous food supply at 
reasonable cost is pushing the farmers to the edge, so far dairy farming industry has 
done a remarkable progress in terms of selecting and tracking the best breeds, cow 
genetics improvements, artificial insemination and feed management. Farmers also 
spend time, effort and money on applying these high standard measures expecting 
an optimum outcome in terms of reproduction and milk quality and quantity. However, 
without a reliable proper feedback system the farm stays vulnerable to a revenue leak 
incidents that might not be observed until it is too late.

Among the required feedbacks for the farm managers are the real-time status of the 
individual animal health, the quality of milk produced per cow and the cow group 
performance. The industry is fully aware of the importance of these feedbacks and 
hence on organizational level the milk recording organizations (MRO) do a periodical 
farm visits. Milk samples from the milking herd are collected and analyzed. This process 
takes place every six weeks for the MROs’ member farms. Also, on milking equipment 
manufacturing level, the industry tries to deploy the possible sensory solutions to afford 
such in-field feedbacks for its customer farms.

The MROs send the farm milk samples to a central lab and get back to the farmer 
with a results report within 48 hours after sampling. The report mainly involves milk 
constituents of fat, protein and lactose in addition to somatic-cell count (SCC) analysis. 
Through such data the MRO can advise the farm about a potential or existing metabolic 
disorder, feed diets and concentrates for cow groups and also clinical or sub-mastitis 
in specific cows. However, in such cases the lack of real-time data could cause the 
farmer to endure late decision losses.

As for automatic milking systems (AMS) manufacturers the endeavors for developing in-
line and on-line measurements to achieve such real-time monitoring has been ongoing 
for a few years. Most of these on-line systems use reagents within its analysis process 
which makes it an expensive solution and complex for installation in parlors. There are 
other  inline solutions that depend on spectroscopy technology      in the near infrared 
range which makes it reagent-less which counts as an advantageous point, but those 
systems did not achieve the required accuracy yet.

Speaking of the accuracy of milk constituents’ analysis, the ICAR organization have 
set a defining measurements maximum permissible deviation for in-line and at-line 
systems to be certified [1, 2]. The ICAR organization did not certify according to the 
author’s knowledge any on-farm milk analyzers yet indicating that the industry with its 
different parties need to work on fulfilling this gap. A feedback solution based on real-
time milk constituents’ analysis to be optimum should fulfil ICAR standards, prove cost 
effectiveness for the farmer to deploy it and be appropriate for working in on-farm or 
parlor conditions. These three parameters should be realized all along in one solution 
to be a reliable one for the farmer.

Infrared spectroscopy has been a cornerstone for milk analysis for a long time. In fact, 
some mid-infrared spectrometer (MID-IRS) analyzers are currently certified according 
to the ICAR laboratory standards but the MID-IRS is an expensive technology to be 
deployed at the farm and bulky to fit in field. Nowadays, miniaturizing spectrometers and 
specifically near-infrared (NIRS) using Micro-electro-mechanical (MEMS) techniques 
has made the technology more cost affordable and more diminished in size to fit in field 
use. NIRS miniaturized systems successfully achieved two out of the three parameters 
required for being a reliable system but in a seek of cost and size reduction the accuracy 
of measurement is slightly sacrificed, balancing those three parameters at such micro 
size is a very slick iterative work.

Si-ware Systems Company has developed its own version of miniaturized Fourier 
Transform Near-Infrared Spectrometer (FT-NIRS) called NeoSpectra. Among the 
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market of miniature NIRSs, NeoSpectra offers the widest measuring spectral range 
of 1,350 – 2,500nm. At such spectral range Si-ware has put an effort and resources 
to examine, iterate and improve its sensor for the dedicated use of milk constituents’ 
analysis to reach the optimum balance of accuracy, speed and cost effectiveness 
requirements.

Building-up on the study presented in ICAR conference in Prague 2019 showing the 
performance of different NIRSs versus ICAR standards [3] we present in this work the 
NeoSpectra measurements, models used, reference methods applied and standard 
deviation (SD) resulted of raw farm milk analysis for fat, protein, lactose. Then, a 
conclusion of the results is presented comparing the proposed solution to the available 
market solutions demonstrating what the industry have accomplished to fill in the gap 
of presenting a real-time milk analysis reliable feedback solution for dairy farmers.

Spectroscopy is the study of physical and/or chemical properties of materials by 
analyzing their response to light. Knowing that each chemical component has a unique 
spectral pattern, the analysis of the spectral response of matters tells a lot about 
their chemical composition and/or concentration. Today, spectrometer instruments 
can be found in labs and industrial environments for material identification and/or 
quantification in different application areas. There are many conventional topologies 
for spectrometry instrumentation including Fourier Transform InfraRed (FT-IR) that 
offers several performance and cost advantages. (FT-IR) spectroscopy has evolved 
over several decades because of its necessity for various applications throughout the 
physical, chemical, and biological domains. Spectroscopy is used for identification 
of different kinds of materials (qualitative analysis), or in quantifying the amount of 
materials which is called quantitative analysis. Compared to the other technologies like 
dispersive instruments, FT-IR devices provide multiple advantages such as the wide 
spectral range, the multiplex (Felleget) advantage, higher optical throughput, the use 
of a single photodetector in addition to wavenumber range flexibility and measurement 
speed [4]. Example applications include medical analysis [5,6], food quality control [7, 
8, 9] and soil analysis [10]. Near infrared (NIR) spectral instruments are having great 
advantage due to the lower cost of its optical components and also good performance 
compared to the mid infrared (MIR) range [11]. In addition, samples do not require 
special preparation, which preserves the sample integrity after completing the analysis. 
The sample can be measured either in transmission mode or in diffuse reflectance 
mode, where the latter is the method of choice for most solid samples or liquid samples 
containing scattering sites. A good comparison about different spectroscopy solutions 
for milk analysis shows the advantages of different ranges and the disadvantages [12]. 

Since every material has a unique response to light, the analysis of the light interacting 
with a certain material can reveal a lot of information about its composition. The 
analysis of light to determine the properties of materials is what spectroscopy is all 
about. Light interacting with materials is essentially a spectrum of electromagnetic 
waves with different wavelengths. Fundamentals of bands absorbed by materials are 
found in Mid-Infrared (MIR) region of light (wavelengths >3,500 nm). The Near Infrared 
(NIR) region of light is absorbed by the energy bands related to the overtones and 
combinations of the fundamental bands. 

The unique information from the vibrational absorption bands of a molecule is reflected 
in the NIR spectrum, but some spectral numerical processing and statistical analysis 
are required to “unlock” this information. The application of statistical methods to 
the analysis of experimental data is known as chemometrics. NIR spectroscopy has 
long been used as a material analysis tool. It provides various advantages over other 
analysis methods including:
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•	 Tests are non-destructive.

•	 Almost no sample preparation is required.

•	 Different parameters can be measured simultaneously.

•	 Ability to obtain results instantly.

Conventional FT-IR spectrometers are bulky, expensive, and sensitive to vibrations 
limiting their usage to the lab or controlled environments. There is a huge demand for 
a portable device that can be used for inline or field applications [13]. That is why many 
new emerging technologies have gained a lot of attention in the past decade in different 
industries. One of the main enabling technologies is the micro-electro-mechanical 
system (MEMS) [14, 15, and 16]. There are many MEMS based spectrometers 
reported in literature based on different technologies, including diffraction gratings 
[17], micro-mirror devices (DMDs) [18], multimode interference (MMI) interferometers 
[19], linear variable filters with photo-detector array and tunable Fabry‑Pérot filters 
[20]. These solutions are either limited in spectral range or not scalable enough to 
meet the growing need of the spectral sensing market. The adoption of NIR analysis 
instruments has been mostly limited to labs or in-line process analyzers. This limitation 
was mostly due to the fact that those instruments are very bulky. Recently, portable 
NIR analyzers have become commercially available. However, their high price tags 
limited their adoption to limited use cases, or their limited performance limited the 
application they could enable.

NeoSpectra solutions based on MEMS FTIR technology introduces a real lab 
performance compared to benchtop devices while at the same time having instance and 
cost effective solutions for in field applications. They are based on Fourier Transform 
Infrared (FT-IR) technology that offers a wide spectral range for the best qualification 
and quantification of materials. NeoSpectra solutions operate in the Near-Infrared 
(NIR) from 1,350 to 2,500 nm. This wavelength range goes up to the highest point of 
the NIR and is the widest range versus comparable solutions. 

Looking on the milk analysis industry, the most commonly commercially available milk 
analysis solutions are either based on wet chemistry, Ultrasound technologies, or Mid 
Infrared Spectroscopy Technology.

Wet chemistry provides highly accurate results. However, it requires analytical 
lab professionals to perform lengthy analysis processes. Hence, they can only be 
performed in labs and it does not enable quick analysis checks. Ultrasound technology 
comes at relatively low cost and is relatively easy to use, making them more adoptable 
across the supply chain but their results are not reliable. The accuracy of the results 
is highly dependent on sample composition and conditions. Mid IR technologies 
enable highly accurate analysis and quickly. However, their costs and size limited 
their adoption to labs and large stakeholders in the supply chain, leaving the rest of 
the supply unchecked.

In the last decade new technologies that allow miniaturizing NIR based solutions 
have been emerging. While these solutions are quite promising in potentially enabling 
ubiquitous, easy to use and quick milk analyzers, achieving the accuracy level that is 
acceptable across the milk supply chain has been a major challenge. To date, to the 
best of the author’s knowledge, there has been no commercially available solution 
based on NIR technology that satisfies ICAR standards for in-farm or in-lab use.

This raises the questions: How to bring the advantages of the NIR spectroscopy to the 
field for instant, non-destructive, easy to use, and cost effective milk analysis solution. 
NeoSpectra spectral sensing solutions presents a great answer for this question. The 
technology combines the advantages of MEMS technology, FTIR spectroscopy and 
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Figure 1. Model development steps.

artificial intelligence to enable a chip-sized, cost effective, and scalable solutions. The 
solutions offer performance comparable to laboratory-based spectrometers, and at the 
same time with instant and cost-effective performance. 

In order to demonstrate the capability of the technology in milk analysis, NeoSpectra 
solutions are used in testing different milk samples in the following experiment. In order 
to make sure that different variations of milk samples were covered, milk was lactated 
from different cow types, different locations, and different farms that use different farm 
management systems. In numbers: 110 cows from 3 different breeds and 5 different 
herds were lactated to provide 110 milk samples from four different villages in two 
different states. Upon lactation, milk samples were stored in an ice-box until it reached 
the lab and stored at -20C in the lab. Before collecting measurements from stored milk 
samples, the milk samples are pre-warmed at 30C for 20-30 minutes. To homogenize 
the samples, gentle stirring (10 times clockwise and 10 anti-clockwise) is performed 
before each measurement. The steps for developing a model that can be used in 
predicting the different milk parameters is shown in Figure 1. After milk collection the 
milk samples are splitted in to two identical groups. First group is used to build the 
reference database using the standard chemical analysis methods while the other group 
is used to measure the spectral reference measurements using NeoSpectra solutions. 

The spectral data and their corresponding reference values can be used to build 
mathematical data models or train AI algorithms. Those models and algorithms can be 
used to predict the chemical composition of samples with unknown reference values. 
The following steps are required in order to build the analysis models that predicts the 
chemical composition of milk samples:

1.	 Collecting various milk samples. The collected samples should cover the different 
variations that are expected to be found in the real use-case. The number of samples 
to be collected usually vary depending on the expected variations in the sample 
to be analyzed. Typically, a sample set of around 100 samples is good enough to 
have a robust analysis model.

2.	 Measuring reference values for the parameters of interest using reliable reference 
methods.

3.	 Measuring the spectral data of the collected samples.

4.	 Splitting the collected data sets to 2 parts: A calibration set that is used to build the 
chemometrics model, and a validation set that is used to test how well the model 

Milk s 
 
Figure 1. Model development steps. 
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can predict the values of the parameters for samples that were not part of the 
training data.

5.	 Data pre-treatment: Data are preprocessed to eliminate any variabilities that may 
affect the accuracy of the models to be developed. This includes removing the effect 
of any sample presentation irregularities and normalizing the different samples. 
[21]

6.	 Developing AI models using the calibration set.

7.	 Analyzing results by comparing the predicted values with the pre-known reference 
value. A study of the prediction error and bias evaluates the model performance.

In order to have high confidence in the prediction of NIR, it is important to make sure 
that accurate methods were used to collect the reference value used in building the 
analysis models. In other words, garbage input data to the modeling process would 
result in garbage output. Therefore, according to Procedure 1 of Section 12 of ICAR 
Guidelines - Protocol for the Evaluation of Milk Analysers for ICAR Approval the 
reference methods used should comply to standardized methods of at least one of 
the international guidelines (ISO, IDF, AOAC). In this study, chemical methods used 
to measure milk components, which complies with AOAC (Association of Official 
Analytical Chemists) official methods No. 990.20 (2012), as follows: 

The total milk proteins were measured chemically according to Kjeldahl method. Briefly, 
solutions of 15.00 g K2SO4, 1 ml CuSO4 catalyst solution and 5ml of warm milk (38°C) 
were mixed and weighed and immediately place in digestion flask. 25 ml H2SO4 were 
added, and digestion was conducted over heating device. Acid digest was cooled to 
room temperature. After digest, the mixture was cooled to room temperature, and 
300 ml H2O was added to flask and mixed by swirling. For distillation, the condenser 
water was turned on and 50 ml H3BO3 solution was added with indicator to graduated 
500 ml Erlenmeyer titration flask and flask placed under condenser trip. 75 ml 50% 
NaOH was added to the diluted digest down sidewall of Kjeldahl flask with no agitation. 
Immediately flask was connected to distillation bulb on condenser. The ammonia 
formed is distilled into a boric acid solution containing the indicators bromocresol 
green and methyl red (> 200 ml total volume). H3BO3 receiving solution was titrated 
with standard 0.1 N HCL solution until the first trace of a pink color. In order to identify 
the amount of the total protein, the following equation was used. 

Moles of HCl = moles of NH3 = moles of N in the sample.

A reagent blank should be run to subtract reagent nitrogen from the sample nitrogen.

 
where:

NHCl = normality of HCl, in mol/1000 ml. Corrected acid vol. = (ml std. acid for 
sample) ‑ (ml std. acid for blank). 14 = atomic weight of nitrogen. A factor is used to 
convert percent N to percent crude protein = 6.38. % Protein = % N * 6.38.
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Total fat analysis – 
Gerber method 

Lactose content 
determination - 
Fehling’s Test 

Spectra data 
collection 

The total fat analysis is performed using the Gerber method. The procedure is as 
follow : Total of 10 ml of H2SO4 at 15–21°C were added into a Gerber milk bottle, 
and using a Gerber pipette, 11 ml milk sample 11 ml were accurately added into the 
Gerber bottle, and 1ml of isoamyl alcohol was added to the bottle. The mixture was 
shaken and centrifuged briefly for 5 minutes. The mixture was then placed in a water 
bath at 60–63°C and the fat content was measured from the graduations on the bottle 
neck. To get an accurate measure of the fat content, the previous steps were repeated 
three times for the same milk sample and the fat content was determined by taking 
the average of the three measurements.

The lactose content is measured using the Fehling test. The procedure is as follow: 
25 ml of milk was transferred to a standard 250 mL flask and 50 ml of distilled water was 
added in addition to 5 ml of ferrocyanide potassium solution and 5 ml zinc acetate (with 
flipping after each addition), and filtrated. 10 ml of Fehling’s solution A (CuSO4.5H2O) 
was added into a conical flask followed by Fehling’s solution B (sodium potassium 
tartrate solution) and 25 ml of the filtrate was added into the conical flask containing 
solutions A and B and heated to boil for two minutes. Then, three drops of methylene 
blue indicator were added into the boiling solution and filtrated drop wise at intervals 
of 10 seconds until the blue color of the methylene blue indicator disappears. The 
volume of filtrate used at the end point of the reaction (red color) was measured and 
Lactose % was calculated from Lane-Eynone Table.

The spectral data collection procedure should follow the same procedure that shall 
be used in the prediction of real use-case measurements. Therefore, it is important to 
keep in consideration that the lab setup used in the experiment shall enable an easy 
to use, stable, and repeatable sample handling and measurement procedure.

The collection of spectral data consists of two main steps:

•	 Background measurements: This step is important to calibrate the spectrometer to 
a reference spectral response and minimize any contribution from the instrument 
on the output spectrum. To do so, a disc of a white reference material “Spectralon” 
that has a flat spectral response over the NIR range is placed on top of the 
NeoSpectra sensor, and a background measurement is collected. This step, despite 
its importance, doesn’t necessarily have to be done every time a new spectrum 
is collected, but should be done in the beginning of the measurements session or 
whenever any variations in the setup or the environment in which the experiment 
is taking place.

•	 Sample measurement: The samples are poured in a beaker that has a thin, 
flat bottom surface. An off the shelf beaker is used in this experiment which is 
commercially available and the material of the beaker should be transparent in 
the NIR range. This makes sample handling simple and an easy procedure which 
does not need any sample preparation. The user should only make sure that the 
sample has a height or thickness larger than 10 mm inside the beaker. This is to 
ensure that the sample thickness is larger than the penetration depth of NIR light 
in the milk. The beaker is then simply placed on top of the NeoSpectra sensor and 
a measurement is acquired. The selected scan time for each scan is 5 s.
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Modeling results 

Data analysis and 
modeling 

The output spectrum consists of the ratio of sample measurement and background 
measurement. For each sample, 3 measurements are collected and the position of 
the beaker is changed after each measurement.

The collected spectral data for all samples were tabulated with their corresponding 
reference values. Data was split into two groups:

•	 90% samples for calibration set.

•	 10% samples for validation set.

In order to ensure the representativeness of the data used to build and validate the 
analysis models, the selection of the data sets was made in a way that ensures that 
reference values of the different parameters are well distributed across the value 
ranges.

To check the accuracy of the prediction models a comparison is performed between 
the predicted values with the reference values. This is done by plotting the reference 
value against the predicted value. Ideally, this plot should be an identity line. In practice, 
the predicted values are fitted to a regression line and model is characterized by using 
different statistical parameters

•	 Coefficient of determination or R2: This parameter describes how well the 
predicted values fit the regression line. An ideal model has R2 of 1. A model with 
R2 of 0.75 means that the fit describes 75% of the variability of the target value 
being predicted [21, 22].

•	 Root Mean Square Error of Prediction or RMSEP: This parameter measures 
the average accuracy of the prediction. It is considered that 2 times the RMSEP 
represents a 95% confidence interval for the real value. For instance, if the fat 
prediction model has an RMSEP value of 0.1%, and the predicted value of fat 
content is 4%, then there is a 95% chance that the reference value of fat content 
for this sample is between 3.8% - 4.2%.

•	 Bias: This parameter represents the average difference between predicted values 
and reference values. Ideally, the value of the bias is 0. Higher values mean that 
the model tends to overestimate the composition, and lower values mean that 
model tend to underestimate the composition of the material.

•	 Standard error of prediction or SEP: This parameter measures the precision 
of prediction which means the difference between different measurements for the 
same sample. When Bias tends to 0, the SEP tends to have the same value as 
the RMSEP.

First, it is important to make sure that range of values cover the ranges to be expected 
in the field. In the calibration set, fat content ranged from 1.03 to 4.93, protein content 
ranged from 2.89 to 4.11, and lactose content ranged from 4.18 to 5.31. In the 
validation set, fat content ranged from 1.03 to 4.52, protein content ranged from 2.89 
to 3.96, and lactose content ranged from 4.36 to 5.06. The reference values of both the 
calibration and validation sets were scattered across the range of the corresponding 
milk constituent to have a good representation of the population of the study in both 
sets. The figures below show the histogram of the fat, protein and lactose values of 
the samples collected in this study. 
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Figure 2. (a) Histogram for fat samples (b) Histogram for protein samples (c) Histogram for lactose samples

                              A                                                     B                                                      C

Regression models based on non-linear neural networks architecture [23] were built 
for each parameter and were tested using the validation set. Dimensionality reduction 
was first carried out on the spectral data to build the model based on the independent 
variables that best represent the dataset.

·	 For the fat content, the calibration model shown in figure (3) (a) achieved R2 of 0.98 
and RMSE of 0.158. The model was then validated using the validation set where 
it scored the following: R2=0.99 and SEP=0.147. this is shown in figure (3) (b). 

·	 For the protein content, the calibration model shown in figure (4) (a) achieved R2 

of 0.89 and RMSE of 0.078. The model was then validated using the validation set 
where it scored the following: R2 =0.98 and SEP=0.131, this is shown in figure (4) 
(b). 

·	 For the lactose content, the calibration model achieved R2 of 0.82 and RMSE of 
0.105. The model was then validated using the validation set where it scored the 
following: R2 =0.77 and SEP=0.114, this is shown in figure (5) (b). 

·	 Models of the three milk constituents show high correlation with the chemical 
references. Results show a high generalization to the validation set assuring the 
regression model robustness to new samples.

Table 1 summarizes the different results achieved for the three parameters. Biases 
of the three modeled parameters are all close to zero showing no shifts in predictions 
from actual values. SEPs of the three modeled parameters are below 0.15.

In order to judge on how those results are, they are compared to other results reported 
in literature [3, 24] for experiments conducted using miniaturized NIR technologies for 
in-field use. The results are also compared to ICAR standard for in-field and in-lab use 
as shown in figure (6). It can be seen that results generated using NeoSpectra are the 
only ones exceeding the ICAR standards for in-field use for all parameters, and their 
performance is very close to those of in-lab standards. 

 
Table 1. Fat, protein, and lactose modeling results summary. 
 

 Calibration  Validation 
 R2 RMSE  R2 RMSE SEP Bias 

Fat 0.984 0.158  0.991 0.167 0.147 0.096 
Protein 0.891 0.078  0.979 0.127 0.131 -0.033 
Lactose 0.818 0.105  0.767 0.111 0.114 0.033 
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Figure 3. (a) Fat Calibration model with R2 of 0.984 and RMSE of 0.158. (b) Fat Validation results with R2=0.991, 
RMSE = 0.167, Bias=0.096 and SEP=0.147 
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Figure 4. (a) Protein calibration model with R2 of 0.891 and RMSE of 0.078. (b) Protein validation results with 
R2 = 0.979, RMSE = 0.127, Bias = -0.033 and SEP=0.131 
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Figure 5. (a) Lactose calibration model with R2 of 0.818 and RMSE of 0.105. (b) Lactose validation results with R2 

=0.767, RMSE=0.111, Bias = 0.033 and SEP=0.114 
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Figure 6. NeoSpectra achieved results compared to different technologies reported in literature 
and ICAR standards.

Conclusion The results presented in this work indicates that NeoSpectra NIR spectral sensor has the 
potential to become the first commercial milk analysis solution that complies with ICAR 
standard for in-use applications and at the same time democratizes the adoption of milk 
analysis across the whole milk supply chain. Unlike other conventional and emerging 
technologies for milk analysis, NeoSpectra is a solution that uniquely combines a set 
of features that makes it possible to enable cost-effective, quick, ubiquitous, easy 
to use, and accurate milk analysis. Further experimentations are also conducted to 
assess the ability of NIR analysis to detect milk adulteration and somatic cell count 
(SCC). Combining milk accurate in-field milk composition analysis, with adulteration 
detection and SCC in one solution can disrupt the way we qualify, produce, and trade 
milk across the whole milk supply chain from cow to cup. 
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There has been an increasing interest in the use of residual feed intake (RFI) as a 
measure of net feed efficiency in recent years. RFI is estimated by the residual from a 
linear regression, which treats feed intake as a linear regression function of key energy 
sinks. Re-arranging the linear regression for RFI suggested an alternative interpretation 
of RFI, which postulates the RFI phenotypes as resulting from the recursive effects of 
energy sinks on dry matter intake. This leads to a Bayesian recursive structural equation 
model for a direct genetic evaluation of RFI. A simplified algorithm was proposed to 
compute the Bayesian recursive model. Persepectives on the recursive model were 
taken from a simulation study. 

Keywords: Dry matter intake, Feed efficiency, milk, SNP, structural equation model.

Feed efficiency is an important trait for dairy cattle because feed costs comprise almost 
half of the total costs associated with dairy production. Residual feed intake (RFI), which 
was initially proposed by Koch et al. (1963), is becoming increasingly popular as a 
measure of net feed efficiency in the past decade. The original idea of genetic evaluation 
on RFI consists of two stages (Berry and Crowley, 2013). In the first stage, dry matter 
intake (DMI) is fitted by single-trait linear regression (LR) encompassing energy sinks 
with or without relevant factors, and the residuals are taken to be the RFI phenotypes 
(Løvendahl et al., 2018; Templeman et al., 2015). In the second-stage, RFI is fitted by 
a mixed-effects model, which includes additive individual genetic effects for genetic 
evaluation. Combining both stages leads to the one-step model, eliminating the need 
to specifically estimate the residuals as the RFI phenotypes (Templeman et al., 2015). 

Fitting phenotypes as regressor variables is criticized because standard regression 
models assume that regressor variables have been measured precisely or observed 
without error (Lu et al., 2015). In reality, however, phenotypes are subject to 
measurement errors. Multiple-trait models have been used, which bypass the above 
critics, but they represent indirect methods because RFI’s genetic values are obtained 
through a follow-up partial regression procedure based on the estimated variance-
covariance componets (Kennedy et al., 1993; Lu et al., 2015; Tempelman and Lu, 

Abstract

Introduction
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Bayesian 
recursive 
structural 
equation model

2020). By re-arranging the regression models for RFI, we came with an alternative, 
causative interpretation of RFI. This led to a Bayesian recursive structural equation 
model (RSEM) which allows for directly predicting genetic values and estimating genetic 
parameters for RFI and all the involving traits jointly. 

Consider a single animal, say i. Following Løvendahl et al. (2018), we let the energy 
sink model include metabolic body weight (MBW=BW0.75), energy-corrected milk (ECM), 
and change in body weight (∆BW). That is

 				    (1)

Here, µ1 the overall mean and λ1i qualifies the rate of the change with DMI (denoted 
by y1) with respect to the three energy sink traits, denoted by y2 (MBW), y3 (ECM), 
and y4 (∆BW), respectively. The residual (ri) as the RFI phenotype is then described 
by a mixed-effects model:

						      (2) 

where β is a vector of “fixed” effects of an appropriate length; ar is a vector containing 
the “random” additive genetic effects for all individuals; xir and xzr are the corresponding 
incidence vectors relating the RFI phenotypes to the fixed and random effects, and eir is 
an error term. Note that “random” permanent environmental effects are not considered 
in model (2), but they may be relevant in real applications. 

Combining equations (1) and (2) and moving all the y variables to the left-hand side 
leads to the following one-step model:

			   (3)

The above is recognized as a recursive structural equation between DMI and the three 
energy sink traits (MBW, ECM, and ∆BW) for the ith individual. It postulates that the 
RFI phenotypes result from the recursive effects from energy sinks to DMI, but the 
feedback or simultaneous effects are assumed to be non-existent. Because the model 
parameters in (3) pertain to RFI, not DMI, hence it can provide a direct evaluation of RFI. 

To complete the recursive structural equation model, we define mixed-effect models 
for the energy sinks as follows

				    (4)
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The recursive structural equation model that combines equations in (3) and (4) for the 
ith individual is the following: 

						      (5)

Here, we have 

yi = (yi1, yi2, yi3, yi4)’;  

µ = (µ1, µ2, µ3, µ4)’, and 

e =(er , e2 , e3 , e4)’;  

The vectors for the fixed and random effects were sorted by traits within animals. For 
example, we have 

β = (β11    β12    β13    β14 . . . . . . βκ1     βκ2      βκ3    βκ4  )’, where k is the total number of fixed effect 
levels. 

Assuming a full loading of each fixed effect on all the four traits, we have 

Xi = x’i I, where x’i1  = . . . = x’i4 = x’i , I is a 4×4 identity matrix, and is the Kronnecker 
product operator. 

Similarly, we have α = (α11    α12    α13    α14 . . . . . . αν1     αn 2      αn 3    αn 4  )’

where n is the total number of animals, and Zi = z’i I, where z’i1 = . . . = z’i4  = z’i . 

Finally, the structural matrix (Λ) defines the phenotypic relationships between DMI 
and energy sinks:

					     (6)

Bayesian modeling of structural equation models via Markov chain Monte Carlo (MCMC) 
implementation is described by Gianola and Sorensen (2004) and Wu et al. (2017, 
2018). Here, we briefly describe a simplified algorithm to compute the recursive model 
for RFI. Assume zero genetic and residual covariances, and hence zero phenotypic 
covariances, between RFI and energy sinks, the posterior inferring of structural 
coefficients does not involve any unknown parameters for the energy sink traits. Assign 
a multivariate normal prior distribution for all unknown structural coefficients, 

Then, given the sampled fixed and random effects (βr, ar,and pr) for RFI and the 
residual variance-covariance matrix (R0), the conditional posterior distribution of λ is 
a multivariate normal distribution: 
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		  (7)

where 

In the above,  and Yi is a working 4×(4-1) matrix 
constructed by noting that Λyi = yi - Yiλ for each individual. 

That is,

Furthermore, the posterior inference of the model parameters for RFI, given the 
structural equation coefficients, does not involve any unknown paramters for the energy 
sinks. Thus, a simplified algorithm for computing the recursive structural equation 
model is proposed as follows:

	 The fixed effects, random effects (β_r and a_r), and variance-covariance matrices 
G_rand R_r for the energy sinks are estimated based on a standard multiple-trait 
mixed-effects model, independent of the computed RFI phenotypes. Computing the 
submodel for the energy sinks can be implemented through Markov chain Monte 
Carlo sample by iteratively sampling unknown paramters from their conditional 
posterior distributions, or implemented by REML.

	 The unknown structural coefficients were sampled iteratively from the multivariate 
normal distribution (7). Then, given the sampled structural coefficients and the 

computed RFI phenotypes ( ), the fixed and random effects 

and the variance components  for RFI are sampled from their 
respective conditional posterior distributions based on a standard single-trait mixed 
effects model.

Note that MCMC simulation was only necessary for sampling the structural coefficients 
and unknown parameter for RFI only. This drastically simplified the model computing 
when dealing with a large dataset. Also note that the covariances between RFI and 
energy sinks are fixed to zeros, but the covariances between DMI and energy sinks 
are not, which are computed as follows: 
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Simulation resultsWe simulated standardized phenotypes of DMI, MBW, ECM, and ?BW based on an 
actual pedigree for 908 cows. These animals were progenies derived from 125 sires 
and 477 dams and raised in the USDA Beltsville Agricultural Research Center (BARC) 
Dairy Herd (Beltsville, Maryland, USDA). For simplicity, the fixed effects included only 
the overall mean (µ_j=0) for each trait, and the random effects included individual 
additive genetic effects plus the residuals. The simulated genetic and residual variance-
covariance components were shown below:

We compared four models: (1) one-step linear regression (LR1), (2) two-stage linear 
regression (LR2), (3) recursive structural equation model (RSEM), and (4) multiple-trait 
mixed-effects model (MT). To set up an accurate bench model for comparison, the (co)
variance components in the MT model were assumed to be known and took directly 
from the actual values. RSEM was implemented via MCMC simulation. Ten parallel 
chains (or replicates) were run for each model, each of 2000 iterations, after a burn-in 
of 1000 iterations and thinned every two draws. The means and standard deviations 
of parameter estimates were obtained as averages across the ten replicates. 

All the MCMC chains coverged well after 1,000 iterations. The estimated structural 
coefficients from RSEM corresponds closely to the partial regression coefficients 
from the one-step LR. The partial regression coefficients from two-stage LR agreed 
perfectly with the phenotypic partial regression from the MT model, but differed from 
the genetic partial coefficient based on the MT model. These results indicates that both 
RSEM and the single-trait linear regression approaches depicts RFI by the phenotypic 
relationships between DMI and energy sinks. Although there were some differences 
in partial regression coefficients between two-stage LR and one-step LR (or RSEM), 
the estimated additive genetic values are highly comparable between these models 
(Spearman’s correlation was 0.999). The correlations of the estimated RFI genetic 
were also highly comparable values between RSEM and MT, but the correlation was 
slightly lower than that beween RSEM and a LR model. Thus, we concluded that RSEM 
resembled the LR model more than the MT. This was because both RSEM and the 
LR approaches inferred phenotype recursive relationshiops. For the MT model, RFI 
genetic values were inferred based on genetic relationships between DMI and energy 
sinks, which can differ from the phenotypic relationship. This, however, does not mean 

1

 
Table 1. Estimated partial regression coefficients (structural coefficients) from linear regression (LR), recursive 
structural equation model (RSEM), and multi-trait, mixed-effects model (MT). 
 

    Energy 
sink Two-stage LR One-step LR RSEM MT PMean PSD b.COVP b.COVG b.COVE 
MBW 0.327 0.026 0.313 0.027 0.312 0.027 0.327 0.349 0.300 
ECM 0.498 0.027 0.470 0.027 0.469 0.027 0.498 0.629 0.404 

LW 0.127 0.026 0.137 0.025 0.137 0.025 0.127 0.049 0.151 

SD = standard deviation; PSD = posterior standard deviation; PMean = Posterior mean. 
b.COVP, b.COVG, b.COVE = partial regression coefficient based on phenotypic, genetic, and residual 
(co)variances, respectively. 
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Figure 1. Comparing the estimated RFI genetic values from one-step linear regression (LR) and those 
from the recursive model (RSEM, left) or the multiple trait model (MT, right). 
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that RSEM is more accurate than the MT model, because the true RFI gentic values 
were unknown. It is possible to simulate RFI directly, but the simulated relationshiops 
depends on the assumptions, whether it favors one model or the other. Estimated 
heritability for RFI was 0.339 (two-stage LR), 0.348 (one-step LR), and 0.324 (RSEM). 

In conclusion, we proposed RSEM as a direct genetic evaluation of RFI. Concerning the 
estimated RFI genetic values, RSEM was equivalent to the single-trait linear regression 
model, but RSEM expended the analytical capability to multiple traits with causative 
relationships assumed. RSEM can also provide the estimates of genetic paramters 
for RFI and all the involving traits, which are not discussed due to the page limitation. 
Finally, the recursive model extends very naturally to deal with heterogeneous structural 
coefficient matrices (Wu et al., 2007). Extending RSEM for RFI to genomic selection 
is just as straightforward, e.g., by replacing the additive relationship matrix with the 
genomic relationship matrix (VanRaden, 2008).
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A system has been developed to make identification of cows and individual feed intake 
records in commercial farms using a 3D camera system. Cameras are installed in the 
lock after milking where the RFID eartag is identified and images of the cows back is 
stored to generate reference images. These reference images are used to predict a 
given cow when she is eating. Individual feed intake is estimated at any visit during 
the day. The last image of the feed before a visit is stored together with the first image 
of the feed after a visit. These 2 surfaces is subtracted to estimate an intake for a 
visit. Based on feed density the volume is transformed to kilos. All visits are summed 
to daily intake and later on to weekly mean of daily intake and reported throughout 
lactation. The system is installed in 7 herds (5 Jersey, 1 Holstein and 1 Red dairy cows) 
measuring in 1292 Jersey, 536 Holstein and 222 Red Dairy cows in a two-year period. 

Mean daily feed intake measured was 54.7 kilo for Jersey, 60.6 for Holstein and 
59.7  for Red dairy cattle. Corresponding standard deviation was 8.5, 11.2 and 9.5 
kilos respectively. 

A mixed linear model was used to analyse the data for each breed separately. The 
model contained a fixed effect of herd (for Jersey), week of year, week in lactation, year, 
a random effect of animal and a residual term. Repeatabilities (animal variance divided 
by total variance) of daily individual feed intake as a weekly mean were moderate to 
high across the three breeds. For Jersey repeatability was 56%, for Holstein 60% and 
for Red Dairy cattle 61%.

The results suggests that data from 3D cameras can be used to make large-scale 
individual records for feed intake in indoor-housed dairy cattle. This data can be used 
to make genetic evaluations and management decisions. Further data over a longer 
time period and from more herds is needed to confirm these results. Therefore, the 
system will be installed in new herds in 2021 and more than 3000 cows will be added 
to the CFIT registration system.

The data is measured throughout lactation, which opens up for estimation of genetic 
correlation between efficiency and health traits in early lactation. Using 3D camera 
data opens up for individual measures of other phenotypes. This includes weight but 
also health, welfare and behavioral traits.

Keywords: Feed intake, identification, artificial intelligence, Holstein, red dairy cattle, 
Jersey.
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Feed cost is up to 70% of the running cost for a farmer, so only a marginal save of 
feed will make a huge impact on the return on farm. A part of the variation in feed 
intake and efficiency is heritable, which make selection for improved feed efficiency 
possible (Løvendahl et al., 2018). A limitation to implement this is lack of data on an 
individual level which is recorded in commercial settings throughout lactation. So far, 
equipment for making individual feed intake records has primarily been on research 
farms and based on scale system that are expensive and time consuming to manage 
(Seymour et al., 2019). Feed intake measured in research farms is repeatable (0.66) 
as well as heritable (0.34) (Berry et al., 2014), so selection can be performed in order 
to change the trait in the preferred direction. The ideal system measures, controls, 
and monitors individual feed intake of the free-housed cow while not interfering with 
feeding habits and not introducing additional work or inhibiting workflow on the farm 
(Halachmi et al., 1998).

A 3D camera system to identify cows and make individual feed intake records have 
been developed (WO 2017/001538; WO 2014/166498). The system works without 
disturbing daily behavior of either the cows or the farmer. The cameras records data 
around the clock and based on image analysis cows are identified at the feeding table 
(Thomasen et al., 2018) and the amount of feed eaten is quantified (Lassen et al., 
2018). In these studies, the data was collected in a limited time period and identification 
percentage and repeatabilities of the feed intake between days and weeks were 
reported and showed promising results. Other camera-based systems have been 
initiated to make individual feed intake records. Bezen et al. (2020) used the CNN 
approach to quantify feed intake and showed a MSE of 0.119 kg2 feed pr meal based 
on 63 meals recorded on 6 cows in 36 hours. Identification relied on observing digits 
related to the cow ID on collars on the neck of the cow. 

The aim of this study was to analyze individual measures of feed intake recorded in 
commercial farms using 3D cameras. This was studied by estimating the repeatability 
of the phenotypes recorded in three different breeds.

To make individual feed intake measures 3D cameras from Kinect was used (Microsoft). 
Each camera is placed 2.5 meter apart and 4.5 meter from the empty feeding table 
covering the entire feeding table. In addition, an ear tag reader and a 3D camera is 
placed outside the milking parlor in the exit corridor. Three types of images are recorded 
from the 3D camera: normal pictures, IR pictures and depth pictures indicating the 
distance from the camera to the object that is within the range of the camera. 

Data was recorded in seven commercial dairy herds in Denmark with Jersey cows. 
Data was recorded from 1st of February 2019 to 1st of March 2021. In 5 of the herds 
there were Jersey cows, in one there were Holstein cows and in 1 herd there were 
red dairy cattle. In all herds cows were kept indoors year around.

When cows leave the milking system their electronic ear tag was read and at the same 
time a 3D picture is taken of the back of the cow. These pictures were stored and used 
as a reference to predict the same cow based on the contours, color and patterns of the 
back of the cow, when eating at the feeding table based on the MASK-CNN algorithm 
(He et al., 2018; Thomasen et al., 2018; WO 2017/001538). This approach was tested 
in a validation study where cows id was manually annotated to visits at the feeding 
table over a 14 day period. The validation was conducted in comparing the real ID of 
the cow with the predicted id based on the MASK-CNN algorithm. 

When a cow enters the head to the feeding table the last image of the feeding pile 
before she put in her head and began eating was stored from vbiruel boxes defined in 
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Table 1. Data description including breed, number of cows, mean 
feed intake in kilos, and standard deviation. 
 

Breed # of cows Mean Std 
Jersey 1292 54.74 8.53 
Red Dairy Cattle 222 59.72 9.53 
Holstein 536 60.59 11.20 

the feeding table. When the cow has finalized the meal and takes the head out again 
the first new image of the feeding pile is stored. The height in each pixel from two stored 
images are now subtracted from each other and the removed feed is quantified on pixel 
level. From each specific visit 5 variables are stored: the ID of the cow, the placement 
in the barn, time when the meal was initiated, time when the meal was finalized, and 
the amount of feed eaten. During a meal feed will be allocated to a specific cow from 
5 virtual boxes. The virtual box right below the cow as well as he two virtual boxes to 
the left and the right. If two cows share a virtual box during a feeding visit, they will 
also share the feed taken from this box during the two cow specific visits. 

The feed intake approach been validated in a controlled experiment where 325 liters 
of feed where put in a pile below the cameras. Feed were then removed as bits from 
various places of the pile to mimic how a cow would remove feed 19 liters at the time 
with 2 minutes interval. The standard error on how well the sum of the pixels predicted 
the feed removed was then estimated to see how well the algorithm worked.

In order to obtain repeatability, data was analyzed using the mixed procedure in SAS. 
The model used to estimate the repeatability, looked as follows:

FI= h + w + y + wil(dim) + dim + lac + animal + res

where h is the fixed class effect of herd, w is the fixed class effect of week, y is the 
fixed class effect of year, wil(dim) is a wilmink regression on days in milk, dim is a 
regression on days in milk, lac is a fixed class effect of lactation, animal is the random 
animal variation and res is the random residual variation.

A total of 2050 cows were measured. This was 1292 Jersey cows (JER), 222 Red 
Dairy Cows (RDC) and 536 Holstein cows (HOL). These cows were distributed in 5 
JER herds, 1 RDC herd and 1 HOL herd. Mean feed intake in kilo with corresponding 
standard deviation and minimum and maximum value is presented in table 1. 

This is done both overall for each breed and for the 7 herds. Mean intake was higher 
for RDC (59.7 kg) and HOL (60.6 kg) than for JER (54.7 kg). The standard deviation 
of the mean was also higher in HOL (11.2 kg) and RDC (9.5 kg) than for JER (8.5 kg). 

Repeatability estimates for daily feed intake was 0.56, 0.61 and 0.60 for JER, RDC 
and HOL respectively (table 2). 

These estimated were based on animal variances of 30.55, 46.41 and 58.53 for JER, 
RDC and HOL, respectively. The magnitude of these estimates corresponds to the 
difference in magnitude seen in the standard deviation of the mean of the feed intake. 
The JER animal variance might also be somewhat lower due to the larger number of 
animals in the study. The measured repeatability was at the same level as several 
other studies have reported in the past based on research farm data (Berry et al., 
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Table 2. Breed, animal variance, residual variance and repeatability. 
 

Breed V(a) V(e) rep 
Jersey 30.55 24.01 0.56 
Red Dairy Cattle 46.41 29.67 0.61 
Holstein 58.53 39.02 0.60 

2014). The feed intake in comparable with feed intake measured in a research farm 
with Jersey cows (Li et al., 2016), RDC cattle (Liinamo et al., 2012; Li et al., 2016) 
and HOL cows ( Li et al., 2016).

The identification algorithm was tested in a validation study over a 2-week period for 
all three breeds. Results showed that id was correct in more than 99% of the visits 
independent on breed. The system is not dependent on freeze marking the cows, 
various neck collars or physical installations in the stable. 

A major priority for developing this system was to obtain data throughout lactation. In 
relation to genetic analysis several studies have shown that genetic correlation change 
during lactation between feed intake, milk yield and body weight (Manzanilla-Pech et 
al., 2014; Li et al., 2017). Estimates for the genetic correlation between feed intake 
and milk yield varies from -0.80 in early lactation up to 0.8 in mid and late lactation 
(Manzanilla-Pech et al., 2014). Selection for improved efficiency in early lactation 
where feed intake specifically needs to be improved based on records obtained in 
mid lactation then might lead to even lower feed intake in early lactation. From a 
management perspective also feed intake records are interesting throughout lactation. 
In early lactation the absolute majority of health problems occurs both related to 
mastitis, reproduction and nutrition. In mid lactation the farmer wants to know which 
cow are most efficient to optimize culling strategy and in late lactation the feed intake 
is interesting in order to optimize strategies in relation to drying off cows. With this 
system all information will be available for the farmer.

The system will be installed in herds covering more than 7000 cows during 2021.

Individual feed intake measures can be made using a 3D camera system that both 
identifies the cow and quantifies the amount of feed eaten by the cow. Repeatability 
was between 0.56 and 0.61 for daily feed intake measured as a weekly average over 
a time period of more than two years. 
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In digital farming, machine learning is already widely used to optimize the production 
using sources such as genomics, health, welfare, production, and environmental 
data. However, this increasing use of machine learning has led to the emergence of 
multiple types of confidentiality and integrity breaches targeting both the models and 
the data they have been trained on. Our main objective in this paper is to discuss 
possible security issues that could arise in digital farming due to the use of machine 
learning techniques and the urgency to implement innovative countermeasures to 
prevent them. First, we propose a security model dedicated to the specific settings 
and threats of the digital farming context. In this model, we identify the resources at 
risk, define the different classes of actors, determine the risk vectors, and propose 
some realistic attack scenarios. Afterwards, we use this model to put in perspective 
the machine learning induced risks and show how they may adversely affect digital 
farming. The considered attacks encompass model theft, model inversion, membership 
inference, data poisoning and adversarial examples. For each of these threats, we 
also briefly revied possible mitigation means, such as differential privacy, prediction 
access control and robust statistics.

Keywords: Digital farming, cyber security, security model, machine learning.

German Agricultural Society defines digital farming as the evolution of smart farming 
to better emphasize that nearly all aspects of farming now heavily rely on digital 
means (DLG Committee for Digitization, Work Management and Process Technology 
et al., 2018). Collecting data massively from a wide variety of sources has allowed to 
take smart farming to a new level, leveraging big data to further improve the power 
of the decision-making system. To do so, various kind of data are collected such as 
environmental, production, health, welfare, genomics, and management. Machine 
learning (ML) is the core concept behind decision-making system, in which a sample of 
data called training dataset is used to generate a predictive model. ML is widely used 
across many industries and as ML techniques become, cybersecurity threats emerge 
(Papernot et al., 2016) putting data confidentiality and production system integrity at risk. 

Many actors have stated that cybersecurity is a concern in agriculture. For instance, 
a 2019 report from the U.S. Government Accountability Office (Dodaro, 2019), has 
indicated that improving cyber security should be one of the main priorities for actors 
in the agriculture sector. Geil et al. (2018) presented a survey in which they show that 
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farmers are being directly affected at large scale. Window (2019) has conducted a 
study that presents major issues concerning data privacy, data ownership and level 
of attention given to cyber security in agriculture and all those points are requirements 
provided by the German Agricultural Society as well in their recent position paper.

A literature review allows us to conclude that working specifically on ML induced 
cybersecurity risks is a missing gap in the literature. Indeed, several reports focus on 
networking and Internet of Things (IoT) related risks (Gupta et al., 2020; West, 2018) 
and several others on Big Data (Sykuta, 2016; Wolfert et al., 2017). However, only a 
few works have been produced to study risks introduced by data analysis techniques 
in digital farming particularly in dairy industries. The U.S. Department of Homeland 
Security (Champion et al., 2018) has also released a report in which they mention 
machine learning and at the regulatory level, farm data ownership is often present in 
the specialized literature (Sykuta, 2016; Window, 2019; DLG Committee for Digitization, 
Work Management and Process Technology et al., 2018).

To study ML induced threats to digital farming, we first propose a security model adapted 
to this context of dairy farms, particularly in Canada, before studying the data life cycle 
and its interactions with the different resources and actors. Secondly, we propose an 
adversarial model to determine realistic threat vectors to ML systems in digital farming 
before proceeding with the investigation of the risks associated to ML, looking at five 
known vulnerabilities of ML systems and three possible practical mitigation strategies. 
Finally, we discuss another ML related security topics that should be investigated along 
ML induced threats.

ML applications rely mainly on two assets: the training dataset and the learnt model. We 
will use the CIA framework to understand the impact of potential compromises on these 
resources. Confidentiality of the training dataset may be critical for privacy reasons, 
as for example valuable data such as genomics are used in digital farming, but also 
because it is part of the intelligence developed by ML application developers. Integrity 
of the training dataset is key to build reliable ML model and availability seems to only 
be a concern at the operational level. In addition, the confidentiality of the ML model 
is important in settings in which it is a monetizable resource such as ML as a Service 
(MLaaS), which is a form of pay-per-request service that could be compromised if the 
ML model was to be stolen. Furthermore, the ML model is a statistical representation of 
the training dataset as its confidentiality impact directly the confidentiality of the dataset. 
The integrity of the ML model is a concern for situations in which the ML predictions 
are used in a sensitive context such as farm management. Availability is a concern in 
time sensitive settings and for systems that cannot be substituted.  

Wolfert et al. (2017) proposed a data chain in their framework for big data in smart 
farming. We adapted it to exclude network/infrastructure-based risk and focus on 
machine learning induced threats to assets described earlier. The principal node is 
data processing in which the ML model is developed. This node has two interfaces, 
the upstream data acquisition node in which the training dataset is being constituted 
and the downstream marketing node in which the end user is presented with a tool to 
query the model and obtain the associated predictions.

In Figure 1, we annotate the data chain to integrate actors found at each stage of the 
data lifecycle. The data provider is the main actor at the data acquisition stage, which 
is often the farmer but could also be laboratories in some cases (e.g. sample analysis 
on milk). We refer to the data collector to formalize the intermediary step consisting in 
centralizing and storing the data. The data processor is the actor found at processing 
stage, who pre-process data to form the training dataset and train the model. Once 
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Figure 1. Actors involved in the data chain.
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the model is trained, the service provider refers to the actor in charge of wrapping the 
model in a product that can be distributed. Finally, the end user is the actor present at 
marketing stage that makes requests and applies predictions using the model through 
the marketed tool.

We adopt the point of view of the data processor who forms the training dataset 
(preprocessing) and engineers the ML model (processing) because he is the actor 
having full and direct access to the resources that we aim to protect. We assume that 
the attacker could be or could impersonate a data provider (upstream) or an end user 
(downstream). For instance, in the case of Machine Learning as a Service (MLaaS), the 
attacker could target the model confidentiality for financial gain. In addition, if training 
dataset contains valuable information (e.g., genomics and/or production data), the 
attacker could target training dataset confidentiality. Finally, when the ML system is 
used for critical applications (food supply or seed production), the attacker could target 
integrity/availability of training dataset, ML model or prediction. 

For the specific context of dairy digital farming, there can be a wide range of adversaries 
(insiders to the context of digital farming or not), thus leading to various levels of risks, 
ranging from a farmer seeking financial gain to eco-terrorists aiming to disrupt the food 
supply. As a result, the adversary is likely to have detailed knowledge about the digital 
farming and could have weak to strong technological skills. To study the attack surface 
and related threat vectors, we look at the interfaces of the ML system leaving aside 
all security concerns that are not inherently tied to ML (network, access control…). 

Looking at the data chain, we have the upstream interface in which data is collected 
and pre-processed to form the training dataset and the downstream interface in which 
the trained model generates predictions upon user requests. At data collection stage, 
an attacker can craft and provide malicious data points to compromise the ML model 
and its predictions. At model interaction stage, malicious requests can lead to leak the 
ML model and the training dataset. More precisely, in controlled access settings, the 
attacker will have to compromise the model through a distant API whereas in model 
sharing settings the attacker is free to access both the program containing the model 
and the API locally, thus making the prediction access control harder and raising new 
concerns like reverse engineering.

Membership inference attacks aim to deduce if a given data point is present in the 
training dataset or not. The first membership attack against a ML system was realized 
by Shokri et al. (2017). They targeted black box models in a context of MLaaS and 
were able to differentiate member data points only by sending requests to the model. 

Risks to machine 
learning

Confidentiality of 
data and model 
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Figure 2. Attack vectors - (1) Upstream, (2) Downstream.

Integrity of model 
and prediction

 

 
 

Salem et al. (2018) have built upon this work to relax assumptions and extend the 
attack scenario. Others have studied membership on Generative Adversarial Network 
(Hayes et al., 2019) and even on robust Deep learning techniques (Song et al., 2019).

Model inversion attack aims to reconstruct information about a data point present in the 
training dataset. This type of vulnerability was introduced by Fredrikson et al. (2014) 
and demonstrated for a ML system used for personalized warfarin dosing. They were 
able to show that an attacker possessing the ML model and demographic information 
about a patient would be able to infer their genetic markers. Until recently, attacks 
failed to inverse higher complexity model such as neural networks but Y. Zhang et al. 
(2020) presented a technique that uses a small amount of auxiliary knowledge against 
neural network in white-box settings.

Finally, model theft attack aims to gain knowledge about a black box or grey box model 
such as type of algorithm, hyper-parameters or trained model parameters. Tramer et 
al. (2016) shows that model parameters at risk in a context of MLaaS, even when 
attacker does not have knowledge about the training data set or model algorithm. They 
use equation-solving attack to extract highly accurate model with a little number of 
requests. In their work presented earlier for membership inference Shokri et al. (2017) 
actually use a shadow model (i.e., a model mimicking the target model behaviour) 
as a step to mount their attack, essentially stealing a black-box version of the model.

Data poisoning attack enables an adversary to influence the predictive power of a 
model by injecting malicious data points into the training data set. For example, Chen 
et al. (2017) presents a scenario in which a back door is installed on a deep learning 
authentication system. Recently, the particular case of sequentially generated data 
for continuous learning system has been studied by X. Zhang et al. (2019). Finally, 
adversarial learning is a class of attacks in which an attacker exploits a predictive 
system by finding an input that induces an abnormal behaviour of the system. For 
example, Al-Dujaili et al. (2018) successfully crafted adversarial example on malware 
binaries that allowed them to evade detection systems. Papernot et al. (2017) showed 
that they can instantiate such an attack in black-box settings targeting MLaaS.

Differential privacy is a designed privacy model to share information about a 
computation made on a dataset without compromising the privacy of each unique 
element. A possible implementation of differential privacy is through the addition of 
noise to the result to render unnoticeable the presence or absence of a particular profile 
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in the data set. Differential privacy is a defence technique that is often used to counter 
membership inference and model inversion attacks. Since it can help generalizing the 
model, it can also be used to mitigate adversarial example and data poisoning attacks. 
Several attacks that we described take advantage of the accuracy of the predictions or 
use confidence levels shared along with the prediction. Controlling how the end user 
accesses the results of the predictive system (e.g., by removing confidence levels) can 
help mitigating attacks such as membership inference and model inversion. Finally, 
robust models are designed to be more resilient to data perturbation both at training 
and prediction stage, helping mitigate adversarial crafting of data both at training stage 
(data poisoning) and at prediction stage (adversarial example). Several techniques 
can be employed to increase model robustness such as robust statistics, which are a 
class of estimation techniques that can be used to minimize impact of high diversity 
in statistical data distribution (e.g. outliers or small subgroups). Adversarial training is 
another technique in which adversarial examples are purposefully crafted and inserted 
in the training dataset to increase robustness against adversarial examples.

In this paper, we have focused exclusively on threat vectors present at the data 
collection and the prediction interfaces. However, the security and privacy of ML 
systems security and privacy are also impacted by other concerns, which we briefly 
review in this section. In the data chain, in most cases the data collector (mostly the 
farmers) hand their data to data-processors. In addition, some of the data collected 
may be critical (e.g., genomics) and considered as business secret (e.g., production 
data). For this reason, the data collector might be reluctant to share its data which 
would break the first link of the data chain. In this scenario, homomorphic encryption 
is a cryptographic technique that could allow the data processor to train the ML 
system without the need for the data collector to divulge its valuable data, effectively 
maintaining our data chain functional. Data collectors have formulated concerns about 
the privacy of their data, and lack of cooperation between actors of the data chain have 
led to tensions within digital farming ecosystem. Doing our research, we have found 
multiple threat scenarios where the adversary is an insider to the digital farming context. 
Releasing tensions between actor would thus in itself help mitigate all ML induced risk 
to digital farming by lowering the likelihood of scenarios where the adversary is part 
of the data chain. A data trusts is a regulatory tool (a contract) designed to ensure 
that the management of a resource benefits each shareholder such as the resource 
provider (i.e. data-collector), resource processing agent (i.e. data-processor) and 
resource beneficiary (i.e. end-user).

As mentioned by organizational actors and looking at the context, it appears that 
security is a very concerning topic for digital farming that has been overlooked until 
now. We evaluated that ML was the left aside in terms of security and data privacy and 
dedicated our effort to help raise the attention as it is being used extensively. We have 
designed a Security model that helps framing the problem and investigated technical 
vulnerabilities and practical ways to mitigate them. During our study we also have found 
that related concern such as data ownership are directly impacting ML security and 
data privacy. Technical and regulatory tools such as homomorphic encryption and data 
trusts are available to help with these related concerns, effectively helping mitigating 
ML induced risks. Agriculture has always been a technophile ecosystem and up to this 
day it has taken the most out of available technologies, leading to the digitalization of 
farming. We believe that digital farming sector should learn from other industries and 
take the opportunity to be ahead of the curve on security and data privacy concerns.
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The SMARTER (SMAll RuminanT breeding for Efficiency and Resilience) H2020 
project aims to develop and implement innovative strategies to improve resilience and 
efficiency (RandE) related traits in sheep and goats. Regarding feed efficiency, the 
objective is to identify novel traits that would be relevant, easy to measure and cheap 
enough to be collected in many animals to identify the most efficient individuals. In 
practice, feed efficiency can be assessed by different criteria such as residual feed 
intake and feed conversion ratio. Both criteria require feed intake to be measured for 
each individual which remains an expensive trait to get and hardly feasible under farm 
conditions. Thus, our objective is to identify novel traits related to feed efficiency and 
use them as proxies for feed intake and/or feed efficiency.

First, novel phenotypes are identified and studied in experimental farms where feed 
intakes of concentrate and forage are recorded for each animal. Different novel 
phenotypes are being considered to study feed efficiency in sheep and goats, including 

1.	 Biomarkers (from blood or milk metabolomics),

2.	 Differentially expressed genes in targeted tissues, 

3.	 Genomic polymorphisms, 

4.	 Ruminal microbiota, 

5.	 Faecal nir spectra, (

6.	 Greenhouse gas emissions and body composition traits. 

These novel traits will be recorded either under classical feeding or under nutritional 
restriction to quantify, for example, the impact of a shortage of concentrate inputs.

Then, the most promising novel traits will be measured in commercial populations. 
From these larger datasets, we will estimate heritabilities of the novel traits and genetic 
correlations to other traits in the breeding goal.

Finally, for some case studies, we will quantify GxE interactions, particularly by 
considering the same breed under different breeding systems or regions.

Keywords: Small ruminants, sheep, goat, resource use efficiency, novel phenotypes.

Abstract 
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Introduction

Material and 
methods

Animals

Feed efficiency is the ability of livestock to transform feed into food edible by humans. 
Breeding feed-efficient livestock is of high interest both at environmental and economic 
levels. Among livestock, ruminants are the only ones able to transform fibers into 
proteins. There is growing interest in breeding ruminants mainly fed with increasing 
amounts of forage and decreasing quantities of concentrates. Breeding programs are 
willing to include feed efficiency in their breeding objectives. Residual feed intake (RFI) 
is currently one of the most common criteria used to improve feed efficiency. RFI has 
been shown to be variable and moderately heritable in meat sheep (Cammack et al., 
2005; Johnson et al., 2018; Paganoni et al., 2017; Snowder and Van Vleck, 2003; 
Tortereau et al., 2020) and dairy goats (Desire, S. et al., 2017). Selecting on RFI is 
thus possible, but it requires feed intake to be recorded, which is the major limit to 
the deployment of this recording on a broader scale, particularly in small ruminants. 
Therefore, there is an increasing interest in identifying proxies for feed intake and/
or feed efficiency directly. In order to be widely recorded, proxies must be easy to 
collect and low in cost. In the SMARTER project, we do not only focus on such new 
phenotypes, but also on others that are more difficult to collect and/or more expensive 
to acquire. The overall objective is to understand the biological pathways underlying 
feed efficiency in small ruminants, which will help in identifying proxies. 

The objective of this work is to gather data from different experimental and commercial 
farms of small ruminants to dissect feed efficiency and to propose proxies that could 
be widely collected to estimate their genetic parameters and their ability to predict 
feed intake or feed efficiency.

Two categories of animals are considered: animals from experimental farms and 
animal from commercial farms. In dairy sheep, experimental protocols rely on 4 
different breeds : Chios (n=8), Lacaune (n=62), Frizarta (n=8) and Assaf (n=47), and 
in commercial farms, ewes from 5 breeds are being phenotyped : Chios (n=250, in 2 
farms), Frizarta (n=500, in 2 farms), Lacaune (n=3,972 in 8 farms), Pyrenean breeds 
(n=876, including ewes from Manech Tête Rousse and Basco-Béarnaises breeds, in 
7 farms). An experiment rely on a nutritional challenge in 40 Assaf ewe replacement 
lambs: half of the animals are subjected, during their prepuberal stage, to a diet 
contained 42% less crude protein than controls. In both control and restricted group, 
animals have been chosen from each of the extremes of the distribution of genetic 
values (paternal average) for milk production. An experiment in Lacaune ewes (n=55) 
relies on divergent lines selected on milk persistency.

In dairy goats, two experiments are conducted, the first in the Alpine breed (n=110) 
and the second in a mixed breed (n=3,421) based on Alpine, Saanen and Toggenburg 
breeds. A total of 11 commercial farms are involved in the collection of fine phenotypes 
of goats: 6 farms with Saanen (n=1,678 goats) and 5 farms with Alpine (n=1,176 
goats). The experiment in Alpine breed involves divergent lines on longevity. Goats 
are daughters of bucks selected according to their extremely high/low EBV on that trait. 

In meat sheep, experiments are based on 7 different breeds: Romane (n=277), Merino 
(n=1002), Corriedale (n= 303), Dohne (n= 360), Texel and Texelx Lleyn(n= 2,340) 
and Scottish BlackFace (n~2,000). In commercial farms, data are being collected in 
5 breeds: Mouton Vendéen (n=1,500 ewes in 5 farms), Rouge de l’Ouest (n= 800 
ewes in 5 farms), Blanche du Massif Central (n=2,000 ewes in 5 farms), Norwegian 
White Sheep (n=1,600 ewes in 15 farms) and Texel (n~6,000 animals in 154 flocks). 
The experiment in the Romane breed relies on two divergent lines on Residual Feed 
Intake (RFI): male lambs that are phenotyped are selected for their extremely high/
low EBV on this trait.
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Table 1. Phenotypes recorded on experimental and/or commercial dairy ewes, dairy goats and meat sheep. 
 

Group of traits Trait Production Population Comment 
Intake Total Feed intake 

(forage or 
concentrate) 

Meat  
Milk 

Experimental 
mainly 

During given control 
periods, under different 
diets 

Intake Concentrate intake Milk Commercial 
Experimental 

Concentrate supplied in 
milking parlour 

Body composition Live weight Meat 
Milk 

Commercial 
Experimental 

Collected at different ages 
per animal 

Body composition Chest width Meat 
Milk 

Commercial At different production 
stages 

Body composition Chest depth Meat 
Milk 

Commercial At different production 
stages 

Body composition Shoulder height Meat Commercial At different production 
stages 

Body composition Muscle depth 
(ultrasound) 

Meat 
Milk 

Commercial 
Experimental 

Only in experimental farms 
for dairy animals and at 
different production stages 

Body composition Back Fat Thickness 
(ultrasound) 

Meat 
Milk 

Commercial 
Experimental 

Only in experimental farms 
for dairy animals and at 
different production stages 

Body composition Body condition 
score 

Meat 
Milk 

Commercial 
Experimental 

At different production 
stages 

Udder composition Udder conformation Milk Commercial 
Experimental 

 

Production Milk Production 
(MY, FY, PY, FC, 
PC)  

Milk Commercial 
Experimental 

 

Production Carcass Traits Meat Commercial  
Gas emissions GHG emissions 

(CH4, CO2) 
Meat Commercial 

Experimental 
 

milk samples Gene expression 
(RNA-seq) 

Milk Experimental  

milk samples Epigenetic marks Milk Experimental  
milk samples MIRS Milk Commercial 

Experimental 
 

milk samples Metabolomic 
pattern 

Milk Experimental  

rumen samples Fatty Acids (volatile 
and long) 

Meat  
Milk 

Experimental Under different diets 

rumen samples NMR Meat 
Milk 

Experimental Under different diets 

rumen samples 16S – microbial 
abundances 

Meat 
Milk 

Experimental Under different diets 

Blood samples Targeted 
metabolites* 

Meat  
Milk 

Commercial 
Experimental 

 

Blood samples NMR Meat 
Milk 

Experimental Under different diets 

Blood samples Genotypes Meat 
Milk 

Commercial 
Experimental 

 

Faeces samples NIRS Meat 
Milk 

Experimental Under different diets 

MY: Milk Yield, FY: Fat Yield, PY: Protein Yield, FC: Fat Content, PC: Protein Content, MIRS: Mid Infra-Red 
Spectra, NMR: Nuclear Magnetic Resonance NIRS: Near Infra-Red Spectra 
* targeted metabolites : glucose, non-esterified fatty acids, beta-hydroxybutyrate, insulin 
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Statistical analyses

Results and 
discussion

Different sets of phenotypes and biological samples are being collected, depending on 
the production type (meat vs. milk) and the farms (experimental vs. commercial). All 
the phenotypes directly collected in the animals or obtained after analysis of biological 
samples are described in table 1. 

Other phenotypes are calculated from these elementary traits: Average daily gain 
(ADG), Feed Conversion Ratio (FCR), Residual Feed Intake (RFI). Differences in 
BCS between two successive physiological stages will also be computed. Milk fine 
compositions from MIRS were also estimated from previous equations. Microbiota 
abundances were get from 16S sequencing and metabolome abundances from NMR.

Feed intakes are obtained with automatic feeders that record each visit of any animal. 
Feeding behavior traits were calculated from these datasets. 

Not all the phenotypes are available for all individuals. However, live weights and body 
composition traits obtained through ultrasounds are recorded for almost all meat sheep, 
and milk production traits are recorded for all dairy sheep and goats. Blood samples are 
obtained for almost all individuals with phenotypes, at least for genotyping purposes.

First, each trait will be analysed independently within each experiment. Fixed effects 
and covariates will be selected according to each trial. For example, for divergent lines 
experiment, the line will be considered as a fixed effect. Each trait will be considered 
as a proxy for feed intake or feed efficiency. Combinations of elementary traits listed in 
table 1 will also be considered as proxies. Proxies will be identified in each protocol and 
will be tested in the other trials when possible. The quality of a proxy will be assessed 
through different methodologies, adapted to the different protocol dimension. Here, 
we analysed an experiment in 30 dairy ewes from 4 breeds (8 Chios, 7 Lacaune, 8 
Frizarta and 7 Assaf), with sensitivity/sensibility approach. The receiver operating 
characteristic analysis was used to define thresholds for changes in body composition 
traits as predictors of negative energy balance. Moreover, mixed linear models were 
used to test the association of blood biomarkers with fat and muscle reserves and 
their mobilization.

Multivariate approaches will be applied for large datasets such as microbiota and 
metabolomics matrices. The MixOmics package implements such methods and will 
be used (Le Cao, et al., 2016). 

In commercial populations, the higher numbers of phenotyped individuals will allow 
genetic parameters to be estimated in each population. Pedigrees are recorded in 
the frame of national genetic evaluation programs. These data are currently under 
collection, so no results are available yet.

In dairy ewes from the Chios, Assaf, Lacaune and Frizarta breeds (total=30 ewes), 
NEFA were used to analyse energy balance: an increase in NEFA being synonymous 
with a negative energy balance. Association analyses highlighted that a NEFA status 
of more than 0.3 mmol/L could be predicted by a decrease in Back Fat Thickness 
(BFT) and in the sum of BFT and Longissimus Dorsi muscle Thickness (LDT) of more 
than 0.075 mm and 0.350 mm, respectively. Likewise, a NEFA status of more than 
0.7 mmol/L could be predicted by a decrease in BFT, in LDT and in their total sum of 
more than 0.15 mm, 0.065 mm and 0.350 mm, respectively. In the same 30 ewes, a 
significant positive association of serum albumins with LDT was found. Specifically, 
a change of serum albumins by 1 g/dL was associated with a change in LDT by 1.27 

Phenotypes
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mm. Such an association could be explained by the fact that serum albumins and LDT 
are both deposits of amino acids in the tissues.

In meat sheep, Romane from the 3rd generation of divergent selection on RFI exhibited 
significant differences (p-value<0.05) in feed intake, with more efficient lambs eating 
195g less of concentrate than less efficient lambs, and RFI, with a difference of 1.9 
genetic standard deviations between both groups. Live weight differences were 
observed, with inefficient individuals being heavier (+1.75 kg at 5 months old). Ruminal 
microbiota analyses highlighted differences in composition, and plasmatic amino acids 
were also different between both groups: more efficient lambs have lower plasmatic 
levels than less efficient lambs.

The collection of phenotypes is still on-going. However, first analyses of experimental 
datasets highlight that some phenotypes are linked to feed intake, feed efficiency or 
energy status and can be proposed as promising candidates for proxies of those traits.
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Gastrointestinal nematodes are a major health problem in grazing animals. In Sardinia, 
sheep farming systems are based on grazing natural pastures and forage crops where 
infection is unavoidable. However, the inclusion of nematode resistance in the current 
breeding scheme is difficult due to the laboriousness of the fecal egg counting at Herd 
Book scale. The aim of this work was to assess the feasibility of a genomic selection 
approach based on a female nucleus as reference population and young Herd Book 
rams as selection candidates by using ssGBLUP. The female nucleus consisted of 
5386 ewes from 10 F1 Sarda x Lacaune and 208 Sarda rams. From 2000 to 2020, 
16,977 individual records were collected in 25 dates on 4,304 ewes. All recorded ewes, 
their sires and available male ancestors were genotyped as well as 734 Herd Book 
rams. The weights of A and G matrices when building the H matrix in ssGBLUP were 
varied from 0 to 1 to detect the model showing the highest heritability and predictive 
ability and then using it for the BV prediction of the selection candidates. The highest 
heritability estimate (0.27) was obtained when the G weight was between 0.20 and 0.40 
whereas predictive ability was more or less constant across the different G weights. 
The average expected accuracies of 245 young Herd Book rams depended on the 
amount of information on relatives in the female nucleus. Overall results show that in 
our population high weights of the pedigree information are needed when building the 
relationship matrix in ssGBLUP to improve heritability and predictive ability. It is likely 
that pedigree information adjusts for genomic relationships which are partly due to 
IBS rather than IBD genome sharing. Moreover, recording pedigree information in the 
Herd Book is crucial also to calculate the amount of information on relatives in FRP of 
selection candidates and predict their expected accuracies.

Keywords: Genomic selection, female nucleus, nematodes resistance, ssGBLUP.

Gastrointestinal nematodes (GIN) are major health problems in grazing animals 
(Kaplan et al., 2012). GIN infections determine important yield reductions and increased 
production costs due to medical treatments and higher culling rates (Mavrot et al., 
2015). Moreover, anti-helminthics resistance is more and more an issue in several 
countries (Sargison et al., 2007). Fecal egg count (FEC), i.e., the number of parasite 
eggs per gram of faeces has been largely used as proxy trait to measure resistance 
to GIN. In Sardinia, sheep farming systems are based on grazing natural pastures and 
forage crops where GIN infection is unavoidable. Thus, most farmers administrate anti-
helminthics often with an empirical approach in terms of individual diagnosis, doses 

Abstract
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and frequency of treatments (Sechi et al., 2010). Genetic variation between individuals 
and breeds has been documented (Assenza et al., 2014; Bouix et al., 1998; Sechi et 
al., 2009). However, the inclusion of GIN resistance in current breeding schemes is 
difficult due to the laboriousness of the FEC recording at Herd Book (HB) scale. 

The aim of this work was to assess the feasibility of a genomic selection approach 
based on a female nucleus as reference population and young HB rams as selection 
candidates by: 

1.	 Using single-step GBLUP to improve the genomic predictions accuracy of HB rams 
by exploiting both genomic and pedigree information; 

2.	 Detecting the optimal weights of A and G matrices into H matrix using heritability 
and predictive ability as indicators; 

3.	 Evaluating the expected accuracies of selection candidates.

The generation of the female reference population (FRP) started in 1999 when 10 
Lacaune × Sarda F1 sires were mated to Sarda ewes to produce 928 back-cross 
female lambs. Subsequently, only HB Sarda rams were used to produce the yearly 
replacement of FRP. Until 2009, the average size of the sire families was 43 daughters 
whereas, from 2010, it was reduced to 9 daughters to increase the number of bloodlines 
represented in the FRP. Sarda sires were chosen among those with high genetic 
impact in HB from the Artificial Insemination Center of the breed. In total, 5,386 ewes 
from 218 rams (10 F1 and 208 SA) were generated until 2020. The farming system 
was similar to that commonly applied in Sardinia with most of the adult ewes lambing 
in autumn and yearlings lambing between January and March. The feeding regime 
was based on grazing of natural pastures and forage crops, supplemented by hay and 
concentrates in winter and late spring.

FEC was the proxy trait used to assess GIN resistance under natural conditions 
of infection in the experimental flock. Periodically, a sample of around 50 ewes 
representative of the different management groups was monitored to evaluate the 
percentage of infected animals and decide whether to sample the whole flock and 
possibly administrate anthelmintic. 

FEC was determined using a copro-microscopic exam conforming to the McMaster 
technique on individual samples. When the number of infected animals and the level 
of infestation was considered sufficient to appreciate individual variability, individual 
FEC were measured on the whole flock. From 2000 to 2020 individual FEC were 
recorded from 1 to 3 times per year, more frequently in September and July. Due to 
the low level of infection found, no individual measures were realised between June 
2006 and November 2007. FEC recording for a QTL detection experiment was closed 
in 2012 and restarted in 2015 for the new cohorts with the perspective of implementing 
MA or genomic selection.

Material and 
methods

Female reference 
population

Phenotyping
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Genotyping

Single-step genomic 
BLUP

Finally, 16,977 FEC measurements were recorded in 25 dates on 4,304 animals 
(Table 1). 

FEC presented skewed distribution and were log-transformed using lnFEC=ln(FEC+14).

All 4,304 ewes of FRP, 194 sires and 78 available male ancestors (272 rams) as well as 
734 HB Sarda rams were genotyped with the Illumina Inc. OvineSNP50 Beadchip. SNP 
editing was performed using call rate and MAF thresholds of 90% and 1%, respectively. 
After quality control, 43,293 SNP across 26 autosomes were retained for the analysis. 

Single-step genomic BLUP was used to estimate variance components and breeding 
values with a repeated animal model including the permanent environment and additive 
genetic random effects. Environmental fixed effects were the date of sampling, the age 
of the animal (from 1 to 4 years) and the interaction between the number of lambs and 
the days from lambing. The additive genetic effect was modeled using a realized H 
relationship matrix, which combines pedigree and genomic relationships (Legarra et 
al., 2009). Compared to BLUP, in ssGBLUP, the inverse of the numerator relationship 
matrix A–1 is replaced by H–1 defined as follows:

in which G is the genomic relationship matrix. The G* matrix used for blending was 
obtained according to VanRaden (2008) and Aguilar (2010) as:

G* = [w  + (1-w) ]-1

were the weight (w) ranged between 0.0 and 1.0 by 0.2. Heritability (h2) and repeatability 
(r) were computed as 

σ2
a / (σ

2
a + σ

2
pe + σ

2
e) and  (σ2

a + σ2
pe) / (σ

2
a + σ

2
pe + σ

2
e) respectively 

where s2
a is the additive genetic variance, s2

pe is the permanent environment variance 
and s2

e is the error variance. The parameter w scales differences between genomic 
and pedigree‑based information. (Christensen and Lund, 2012; Meyer et al., 2018; 
Lourenco et al., 2020). In several studies, different values of w were used to construct 
the relationship matrix without estimating variance components and h2 (Aguilar et al., 
2010; McMillan and Swan, 2017). Usually variance component estimation has been 
performed just for traditional AMBLUP, GBLUP and ssGBLUP with a w between 0.95 
and 0.99 (Aldridge et al., 2020; Cesarani et al., 2019; Forni et al., 2011; Hidalgo et 

 
Table 1. Distribution of FEC records (NR), dates (ND) and animals (NA) per year (Y). 
 
Y 2000 2001 2002 2003 2005 2006 2008 2009 2010 2011 2012 2016 2017 2018 2019 2020 
NR 1813 1775 1703 1631 717 1803 1270 748 1190 636 588 931 540 599 640 393 
ND 2 2 2 2 1 3 2 1 2 1 1 2 1 1 1 1 
NA 914 906 853 988 717 879 918 748 792 636 588 740 540 599 640 393 
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al., 2020). In our study, w was varied from 0.0 to 1.0 to detect the blending weights 
of A and G matrices showing the highest h2 and PA and then using them for the BV 
prediction of the selection candidates.

Single step GBLUP was performed using the package AIREMLf90 included in the 
BLUPf90 suite programs (Misztal et al., 2002). The following options where provided 
to AIREMLf90 to built H matrix and blending A and G: 

•	 the pedigree file was provided to built the A”1 internally including inbreeding;

•	 the genomic relationship matrix was created as in VanRaden (2008);

The pedigree file included 6,242 animals tracing back to three generations of FRP 
ewes. Further 2,323 animals were added to the pedigree file when HB Sarda rams 
were included in the analyses.

The predictive ability (PA) of future phenotypes was calculated for each tested w as 
the correlation between the breeding values predictions and the individual average 
yield deviation of 235 last generations ewes. Breeding values and their expected 
accuracies (rBV) were calculated with a training dataset in which the 421 records of 
the 235 ewes were masked.

The model showing the highest h2 and PA estimates was used for the GEBV estimation 
of 1006 genotyped rams born from 1993 to 2020 collected in different frameworks of 
genotyping activities and classified according to their age and level of relationship 
with FRP:

•	 272 sires or ancestors of FRP ewes;

•	 489 old HB rams born from 1993 to 2015 with daughters in HB flocks 

•	 245 young HB rams (including 27 son of FRP ewes) born from 2016 and 2020 
without daughters in HB flocks and considered as selection candidates.

Expected accuracy of breeding values of animal i were estimated as: 

where SEPi is the standard error of prediction derived from the diagonal element of 
the left-hand side inverse of the mixed model equations and hii is the diagonal element 
for the animal i of the H matrix.

The overall results for FEC were compared with those obtained for milk yield (MY) in 
the same population using the same approach (unpublished results).

The overall mean and standard deviation of FEC and lnFEC were 332 + 727 and 
4.82 + 1.43, respectively.

Estimated variance components are shown in Table 2. The highest values of σ2
a were 

reached when w is between 0.2 and 0.4 and then decreases as w increases. Moreover, 
σ2

pe decreases as σ2
a increases while σ2

e is quite constant across the models. 

Expected accuracy of 
selection candidates 
HB rams

Results and 
discussion
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In Table 3 are reported the results in terms of h2, r, PA and rBV in comparison with those 
obtained for milk yield on the same population with the same approach. For FEC, in 
agreement with the variance components estimates, h2 shows the highest value when 
w is between 0.2 and 0.4 and gradually decreases as w increases. When w assumes 
values between 0.2 and 0.4, h2 is 18% higher than when just the genomic information 
is considered (w=1.0). On the other hand, repeatability is quite similar across mo1dels. 
PA is more or less constant across the models whereas the average rBV of the female 
validation sample increases as w increases.

The same pattern of and rBV is found for MY. However, in this case, PA shows a pattern 
similar to h2 i.e the model showing the highest h2 showed also the highest PA estimate.

The rBV estimates of HB rams, obtained using the model with the highest h2 and PA (w = 
0.4), ranged between 0.95 and 0.19 with a mean of 0.71 + 0.18 for sires or ancestors 
of FRP, 0.33 + 0.12 for young HB rams and 0.30 + 0.08 for old HB rams. Among the 
selection candidates, the highest values of rBV were obtained for the progeny of FRP 
ewes as shown in Figure 1. 

As shown in previous studies (Pszczola et al., 2012; Usai et al., 2018), rBV of selection 
candidates can be easily and accurately predicted by parameters derived by the 
numerator relationships matrix which measure their amount of information on relatives 
in the reference populations. This result is important for designing the flow of animals 
from and toward the nucleus in order to achieve good accuracies for most selection 
candidates.

Overall heritability results show that selective breeding may be an option to increase 
resistance to infection of gastro-intestinal nematodes in sheep. Both traditional progeny 
testing and genomic selection with a female reference population are realistic options. 
However, the laboriousness of fecal egg counting at Herd Book scale makes genomic 
selection based on a female nucleus potentially more profitable in terms of costs-

 
Table 2. Estimated variance components (2

a : additive genetic variance; 2
pe: permanent environment 

variance; 2
e: error variance; 2

tot: total variance) based on single-step GBLUP varying the weight (wG) of 
genomic information in blending H. 

 

 
 
 
Table 3. Heritability (h2), repeatability (r), predictive ability (PA) and mean of expected accuracy (rBV) of 
single-step GBLUP ranging the weight (wG) of genomic information when blending A and G into H. 

 
 wG = 0.0 wG = 0.2 wG = 0.4 wG = 0.6 wG = 0.8 wG = 1.0 
 FEC MY FEC MY  FEC MY FEC MY FEC MY FEC MY 
h2 0.249 0.413 0.274 0.441 0.273 0.424 0.262 0.392 0.244 0.354 0.231 0.328 
r 0.289 0.585 0.292 0.587 0.290 0.585 0.288 0.581 0.286 0.577 0.281 0.573 
PA 0.304 0.244 0.317 0.262 0.320 0.260 0.320 0.251 0.319 0.238 0.316 0.221 
rBV 0.450 0.479 0.470 0.496 0.493 0.514 0.519 0.535 0.547 0.557 0.575 0.582 

 

 wG=0.0 wG=0.2 wG=0.4 wG=0.6 wG=0.8 wG=1.0 

2
a 0.416 ± 0.035 0.460 ± 0.035 0.459 ± 0.034 0.438 ± 0.032 0.407 ± 0.030 0.383 ± 0.029 

2
pe 0.067 ± 0.022 0.029 ± 0.021 0.029 ± 0.020 0.045 ± 0.019 0.070 ± 0.018 0.082 ± 0.017 

2
e 1.189 ± 0.015 1.190 ± 0.015 1.191 ± 0.015 1.192 ± 0.015 1.192 ± 0.015 1.193 ± 0.015 

2
tot 1.672 1.680 1.678 1.675 1.669 1.658 

Conclusion
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benefits. Single-step GBLUP is essential to manage genomic selection based on 
female nuclei. In our population, high weights of the pedigree information are needed 
when building the relationship matrix to improve heritability and predictive ability. It is 
likely that pedigree information adjusts for genomic relationships which are partly due 
to IBS rather than IBD genome sharing. Moreover, recording pedigree information 
in HB is crucial also to calculate the amount of information on relatives of selection 
candidates in FRP and predict their expected accuracies. A better understanding of 
genomic predictions accuracies is needed to optimize the flow of animals from and 
toward the nucleus in order to achieve good accuracies for most selection candidates. 
As a perspective, accuracies of genomic predictions may be improved including in the 
evaluation model 10 highly significant SNP identified in QTL detection analysis (Casu 
et al., 2021, submitted). In the short term, genomic predictions for resistance to gastro-
intestinal nematodes will be delivered just for the herd book selection candidates well 
genetically connected with the female nucleus. 
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SMARTER (SMAll RuminanT breeding for Efficiency and Resilience) is an H2020 
EU multi-actor project, whose global objective is to develop novel and collaborative 
strategies to improve resilience and efficiency of the sheep and goat sectors at the 
animal, population/breed and system/farm levels. A dedicated work package (WP6) 
aims to contribute to accelerated genetic progress for resilience and efficiency (R&E) 
through international harmonisation and cooperation in order to deploy genomic 
evaluations across countries. The goal of this paper is to present the different tasks 
that are being undertaken to successfully meet the WP6 goals.

SMARTER will generate recommendations on the phenotyping of R&E related traits, 
which will enrich the ICAR guidelines in the area of small ruminants. SMARTER will 
also build 3 prototypes (meat and dairy sheep, dairy goat) of across country genetic and 
genomic evaluations. The activities under development will result in the tools to enable a 
future routine international evaluation whose business and practical operation model will 
be established during the project. SMARTER has already proposed and implemented 
several tools towards the development of across country genomic evaluations. For 
instance, the file formats to exchange pedigree, phenotype and genotype, have been 
established based on Interbull and Interbeef experiences. An international codification 
of the sheep and goat breeds has been initiated and is expected to be consolidated 
by ICAR. The current breeding programs and genetic evaluation systems have been 
described, based on a survey distributed to all the partners. A comparison of sheep 
genotype metrics across breeds and countries should lead to a common genotype 
platform suitable to all SMARTER populations. Data sharing agreements have been 
signed between partners to pool large set of historical phenotypic and genomic datasets. 
Furthermore, a deterministic model has been developed to quantify the long-term 
benefits and feasibility of international genetic and genomic evaluations has been 
evaluated. The assessment of the long-term benefit of international evaluation is crucial 

Abstract 
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to inform countries to endorse the harmonisation of their methods of phenotyping and 
evaluation and accept to pool together data from different countries.

Keywords: Sheep, goat, guidelines, international evaluation, genomics, harmonisation

SMARTER stands for “SMAll RuminanTs breeding for Efficiency and Resilience ». It is 
an H2020 project running from November 2018 to October 2022 (initially), expanded 
to 2023 (due to Covid-19) and coordinated by Carole Moreno-Romieux from INRAE 
(SMARTER project, 2019).

This is a multi-actor project with 27 full partners from 13 countries. Half the partners 
are non-academic. ICAR is included in the partnership. Various stakeholders are also 
participating in the project. Most of the members of the Sheep, Goat and Camelid 
ICAR working group are from organisations which are either partners or stakeholders 
in SMARTER.

An entire work package (WP6) is dedicated to propose and develop practical tools 
to achieve the objective of contributing to faster genetic progress for resilience and 
efficiency traits in sheep and goats through improved international cooperation.

Four tasks are being undertaken, related to:

•	 The harmonisation of phenotypes, genotypes and pedigree.

•	 Across country evaluations.

•	 The practicalities of international evaluations.

•	 The modelling of the benefits of harmonisation and international cooperation on 
long-term genetic gain.

This paper aims to describe the work carried out in the work package with a particular 
focus on the topics of harmonisations and international cooperation. Both of these are 
part of ICAR’s core activities, namely guidelines, evaluation and certification services. 
In this respect, the outputs from SMARTER should be useful for ICAR community.

The first batch of actions, related to harmonisation, has the triple objective of 

1.	 providing the prerequisite for international evaluations;

2.	 conceiving an optimized and affordable genomic tool and 

3.	 proposing recommendations for recording resilience and efficiency traits.

The following advancements are described in this section: description of breeding 
programs and evaluation systems in the partners’ countries; production of sharing 
agreements for pooling data; proposition of file formats for exchanging phenotypes, 
genotypes, pedigree; research on allele frequency across country x breeds; listing of 
novel traits and their definition; codification of breeds.
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Listing of novel traits 
and their definition

Genetic evaluation systems and breeding programs have been described and data 
collated from 45 sheep and goat populations across 12 countries. This was done 
through surveys distributed to all partners. This work was presented at the EAAP 2020 
(Brito et al., 2020). The main conclusions was that there are numerous challenges to 
be addressed for pooling data from different countries (for example:  high heterogeneity 
of trait recording, SNP panels and statistical models used, average of ~30% of animals 
with unknown sires). However, there are also many opportunities to use the current 
resources to optimize selection for resilience and efficiency in small ruminants across 
countries.

A coherent set of formats have been proposed to pool data from different countries, 
built on principles close to those used in Interbull and Interbeef. An appraisal will be 
undertaken at the end of the project to possibly update these formats, based on the 
issues encountered while using them.

A template of a sharing agreement was produced for pooling data. Ten bilateral 
agreements were signed (between the organisation producing the data and the 
organisation in charge of the evaluation) covering 3 case-studies (meat and dairy sheep, 
dairy goats). The agreements detail the data and the purpose of aggregating the data 
and performing statistical analysis, and give the rights and duty of the providers and 
the researcher on the use of the data. This template, conceived for the needs of the 
projects, could serve beyond the project for the routine exchange of data.

The conception of a genomic tool was carried out by pooling allele frequency information 
acquired from 18 sheep breeds (including 10 meat sheep and 8 dairy sheep populations 
from 5 countries – the UK, Ireland, Uruguay, Spain and France; some populations were 
represented in several countries, such as Charollais, Texel and Vendéens). Comparison 
of genotype metrics across populations enables the detection of the most informative 
SNPs across populations and breeds. This work could be deepened by adding other 
breeds and will result in an optimal panel of SNP for the breeds involved that could 
be exploited in a tool widely used and therefore more affordable. 

The main results were presented at the EAAP in 2020 (O’Brien et al, 2020). Several 
metrics were produced from informative SNP, identified where the frequency of the 
“A” allele was between 0.2 and < 0.8 in each of two pair-wise populations compared. 
In particular, the correlation between minor allele frequencies of the SNPs presents 
in two populations allows to assess the distance between them.

An important practical result of this action is to produce ICAR guidelines on phenotyping 
resilience and efficiency traits. This work is based on the results that will be produced 
by the work packages dedicated to the novel traits, with a two-step approach: 
determination and genetic analysis of the more relevant traits in experimental farms, 
and the proposition of proxies usable on private farms for larger scale for selection. 
These tasks are on-going. However, a first milestone was produced that described 
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the traits for assessing resilience and efficiency in sheep and goats. The guidelines 
will be due by the end of the project when all the results are available.

A first coding of the breeds involved in the work package was proposed. This code is 
based on 3 letters and could be extended beyond SMARTER. The interest of such 
a code relies on the existence of data exchanges across country. The extension of 
the code will be proposed to ICAR. Crossbreed livestock should also be addressed.

Once the prerequisites are set, the second general objective of the work package is 
to assess the interest of an across-country evaluation. This is done through 3 tasks: 
the implementation of 3 pilot studies on multi country evaluation in meat sheep, dairy 
sheep and dairy goats; the writing of the organisational and business model of a 
routine international evaluation; the assessment of the cost-benefit of international 
sharing of germplasm.

Implementation of across country evaluation in three case-studies

The case-studies concern:

•	 Ireland, the UK and France in meat sheep (Fitzmaurice et al., 2021);

•	 France and Spain in dairy sheep;

•	 France, Canada, Switzerland and Italy in goats

The common purpose is to document the practical issues (ID, phenotypes), to assess 
the connectedness across country, to estimate the genetic correlations across country, 
and to run a BLUP / SSGBLUP animal model based on raw phenotypes through 
multi‑trait analysis

The work is underway and practical results will be available in late 2021.

The operation and business model for a possible initiative on across-country evaluation 
in small ruminants is based on 3 axes:

•	 The willingness of countries to participate;

•	 The technical lessons derived from the case-studies, basically the strategy for 
pooling data (typically, raw phenotypes versus EBVs, with or without genotypes), 
the way to address the technical issues on the data, the connectedness between 
population;

•	 The opportunities and risks of international evaluation. This point was addressed 
through a survey within SMARTER that will be extended outside SMARTER. An 
interesting range of opinions and comments were already gathered, that can be 
summarised as follows.
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Estimating the 
cost-benefit of 
international genetic/
genomic evaluations 
and cooperation 

The main opportunities mentioned in the survey are:

•	 Faster genetic gain obtainable from a larger reference population, a higher selection 
intensity and a higher accuracy.

•	 A way to select for difficult-to-measure traits (i.e. health, welfare, environmental 
challenges).

•	 The interest of having EBVs from abroad on the domestic scale.

•	 The insurance to have fair exchanges across countries.

•	 As an externality, the benefit from international collaboration and sharing of 
knowledge, especially through networking amongst stakeholders.

•	 An incentive to deliver on the harmonisation of phenotype recording.

The main risks mentioned in the survey are:

•	 The lack of genetic links between countries and the risk of having genotype by 
environment interactions.

•	 The promotion a few breeds of wide commercial applicability that might endanger 
further, some local breeds. This is because it is likely that very few breeds will benefit 
from the exploitation of genetic improvement to accelerate genetic gain, thereby 
diverging further away from the performance levels of the marginal breeds.

•	 The unbalanced benefits among countries, with the risk that the sale of genetics 
would only be one way.

•	 The risk that the initiative should be too expensive and too time consuming for the 
small ruminant sector. The question of cost-benefit balance is clearly raised.

•	 The loss of independence of genetic evaluations. This risk was highlighted by many 
respondents, suggesting a preference / need to maintain national research groups 
and genetics capability in this area.

The survey will be extended to different stakeholders in order to get a greater variety 
of respondents, and to propose a business plan taking into account the opportunities 
and risks, and how manage and mitigate them.

Gene flow models were developed to quantify the impact a specific subpopulation can 
have over time on the genetic gain or economic benefit of an industry (Fetherstone 
et al, 2020). Importation of foreign germplasm is a widely adopted strategy in some 
populations. An Ireland-New Zealand case study was simulated in order to quantify the 
potential gain that could be achieved through the importation of foreign sire contributions 
(New Zealand) into a domestic sheep industry (Ireland). Within the study, multiple 
market scenarios were assessed. Results reveal that the maximum genetic (measured 
as average genetic gain) and economic (measured as an annualised cumulative value) 
benefit could be achieved by implementing a market scenario which involved shifting 
market share away from conservative domestic breeders and increasing the selection 
intensity of rams retained for breeding without the use of foreign genetics. 

This developed framework could be used in other case-studies within the project.
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for Efficiency and Resilience” (772787, https://www.smarterproject.eu/).
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ANCA or ‘KringloopWijzer’ (in Dutch) is a software instrument that offers Dutch dairy 
farmers insight in the environmental performances of their farm. The ANCA instrument 
measures the cycles of nitrogen, phosphorus, greenhouse gases and carbon. Using 
this instrument will help to reduce mineral losses and to reduce costs on a dairy farm. 

The dairy sector, the feed industry, the milk processors and the accountancy 
organisations made an agreement to reduce the environmental impact in the 
Netherlands by using ANCA. They agreed that from 2016 onwards using ANCA would 
be mandatory for all Dutch dairy farmers. ZuivelNL organised the data collection and 
storage of the data in a central database.  This database with information of all Dutch 
dairy farms enables to establish a benchmark for relevant indicators. In 2020 data 
analyses about greenhouse gases were performed with more than 34.000 farm records. 
The average green house gas emission allocated to milk yield in the Netherland from 
2016 – 2018 was 1226 g CO2-equivalents per kg FPCM. The results can be used for 
improving the mineral management on a dairy farm, to save costs. On the other hand, 
the results can be used as indicators in sustainability programs. Depending on the 
scores of the indicators, farmers can be rewarded with financial bonusses.

In the main dairy exporters, Oceania, EU-28 and North America, dairy farming is under 
pressure to reduce greenhouse gas emissions, ammonia emissions, and nitrogen en 
phosphate losses. This is also the case for the Netherlands. Therefore WUR developed 
an instrument that calculates the greenhouse gas emission, ammonia emission, nitrogen 
and phosphate losses for each dairy farm individually (de Vries et al., 2020). Eventually 
to avoid pollution. This instrument (ANCA, Annual Nutrient Cycling Assessment or 
‘KringloopWijzer’ in Dutch) uses detailed farm specific input that is measured on farm 
and collected from governmental and industrial data sources. Examples are animal 
numbers, feed stocks, manure exports and nitrogen and phosphorus contents of feed 
and manure. This paper shortly describes the greenhouse gas emissions in ANCA, 
the ANCA introduction in the Dutch dairy sector and its greenhouse gas emissions. 
Closing with the (potential) benefit for the individual dairy farmer.
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The ANCA instrument measures the cycles of nitrogen (together with ammonia and 
nitrous oxide), phosphorus, greenhouse gases and carbon. It subsequently quantifies 
the excretion of nitrogen and phosphorus of the herd for individual farms, the uptake 
of nitrogen and phosphorus with crops and the total crop yield as well (Aarts et al., 
2015). The greenhouse gas emissions are calculated according tot de PEFCR guidance 
(PEFCR, 2018a, b, c). This is chain approach where the following aspect are taken 
into account: 

•	 The production of purchased feed.

•	 The production of all inputs to the farm, such as fuels, fertilizers and machines.

•	 Machine use by contract workers.

•	 The land use change associated with the cultivation of crops outside the farm

Methane is an important part of the greenhouse gas emissions. The ration fed to the 
herd and characteristics of the feed components are important for methane production 
from enteric fermentation and manure. ANCA is able to determine the rations and uses 
the mentioned characteristics for calculation the methane emission. The greenhouse 
gas nitrous oxide is calculated according to IPCC (2006) and depends on the total 
nitrogen application (de Vries et al., 2020). The other greenhouse gas that is calculated 
concerns carbon dioxide. This is not only about fuel and electricity but purchased feed 
and materials as well (de Vries et al., 2020). To be able to sum different gases, the 
greenhouse effect of methane and nitrous oxide is expressed in CO2 equivalents. 
1 kg methane from biological processes corresponds to 34 kg CO2, 1 kg CH4 from 
fossil fuel corresponds to 36.75 kg CO2 and 1 kg N2O corresponds to 298 kg CO2 
(PEFCR, 2018a). 

The ANCA-tool provides useful management information about feeding and crops. The 
farmer and his adviser get signals if feeding and crop yields can be improved. This 
helps to reduce mineral losses and to reduce costs for feed, fertilizer and manure. In 
2013 the dairy sector recognized this potential positive effect of the ANCA tool. So in 
that year the dairy sector, the feed industry, the milk processors and the accountancy 
organisations made an agreement to reduce the environmental impact from Dutch 
dairy farms by using ANCA. They agreed that from 2016 onwards it is mandatory for 
Dutch dairy farmers to use the ANCA tool and to store the input and output data in the 
central database that is owned by ZuivelNL (DairyNL). ZuivelNL is an organisation of 
the Dutch dairy supply chain. ZuivelNL has developed a database system to connect 
available input data to the ANCA tool to determine the environmental performance 
for each farm individually. Using available data connections with dairy processors, 
feed companies, governmental institutes (animal numbers, manure and land) and 
analysing laboratories reduce the effort from farmers and advisors to fill out the 
ANCA tool. However, using these data sources will also help to ensure the correct 
data input values. This database with input and output results enables to establish 
a benchmark for relevant indicators and thus room for improvement. In the past the 
data are used for analysing trends in nitrogen use efficiency (Oenema and Oenema, 
2021). Recently the performances for all individual dairy farms in the Netherlands 
were analysed (Mollenhorst en de Haan, 2021). The database not only gives insight 
in the performances about nitrogen surpluses, ammonia emissions but gives insight 
in the average greenhouse gas emissions as well, see table 1. However (almost) all 
dairy farms had to use the ANCA instrument, far less records were used for analysing 
(Table 1) than the number of dairy farms in the Netherlands. Because, when screening 
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1 Stichting milieukeur: https://www.smk.nl/761/about-smk/smk—partner-for-sustainability.html

Table 1 Greenhouse gas emission (g CO2-equivaltents/kg FPCM1) from dairy farms recorded in the central 
database in the years 2016, 2017 and 2018 (calculated with ANCA version 2019). Subsequently are the 
average GHG-emissions for 2016, 2017, 2018 and the three year average shown, together with the division 
into 5 different sources, the average performance of the 25% farms with the lowest GHG (Q1) and 25% 
farms with the highest GHG (Q3). 
 

  2016 2017 2018 Overall % Q1 overall Q3 overall 

# records 10802 10799 12560 34161    

Total GHG (average, 
allocated to FPCM) 1208 1213 1254 1226 100% 1105 1312 

- Enteric Methane 495 484 500 493 40% 452 527 

- Stored Manure 139 140 148 143 12% 130 157 

- Feed Production 134 135 141 137 11% 79 151 

- Imports 375 391 402 390 32% 340 432 

- Energy sources         5%     
1fat and protein corrected milk yield 

 
 
the data, about 12 – 33% of all the records appeared to be incorrect. Still the number 
of records used for analysing is considerably high. Table 1 shows that the average 
production of greenhouse gasses allocated to dairy of a Dutch dairy farm is 1226 g 
CO2-equivalents per kg FPCM. 40% is enteric methane, 12% comes from the manure 
storage, 11% is nitrous oxide coming from the fields and 32% of the emissions is due 
to imports (eg concentrates, artificial fertilizer). Emission from energy sources are a 
rather small part and not analysed. 

The results can be used for improving the mineral management on a dairy farm. On the 
other hand, the results can be used as indicators in sustainability programs. Organized 
by dairy processors or other organisations that want to improve sustainability on farm 
level. Greenhouse gas emission is usually an indicator used in sustainability programs. 
Depending on the scores of the indicators farmers can be rewarded with financial 
bonusses. Several dairy processors already implemented indicators from the ANCA 
tool in their sustainability programs, where dairy farmers can earn extra income. Quite 
well known is the ‘on the way to planet proof’ certificate (managed by SMK1), where 
collaborating dairy farmers can earn up to 2 cents extra per kg milk. 

Aarts, H.F.M., M.H.A. de Haan, J.J. Schröder, H.C. Holster, J.A. de Boer, 
J.W. Reijs, J. Oenema, G.J. Hilhorst, L.B. Sebek, F.P.M. Verhoeven and B. 
Meerkerk (2015). Quantifying the environmental performance of individual dairy 
farms - the Annual Nutrient Cycling Assessment (ANCA). In: Grassland Science in 
Europe, Volume 20 pp 377 – 380.
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In 2017, the National Milk Producers Federation (NMPF) initiated a new component 
of the Farmers Assuring Responsible Management (FARM) Program: FARM 
Environmental Stewardship (ES). The FARM ES program tracks and communicates 
a farm’s environmental achievements. The tool uses a model that is scientifically 
robust – it explains 98% of the variability in total GHG footprint across farms – while 
only requiring a limited amount of farm data. Over 1,800 dairy farms have completed a 
FARM ES assessment through the end of 2020. FARM ES supports farms in identifying 
opportunities to improve efficiency and productivity; the farm’s environmental footprint; 
and internal management systems. Cooperatives and dairy processors can use FARM 
ES to collect on-farm GHG emissions data in a consistent and streamlined way; helping 
dairy farmers and the entire U.S. dairy value chain demonstrate its commitment to 
environmentally responsible production. 

Translating the concept of circular economy into the practical and actionable requires 
farmer-friendly programs and tools. In 2017, the National Milk Producers Federation 
(NMPF) initiated a new component of the Farmers Assuring Responsible Management 
(FARM) Program: FARM Environmental Stewardship (ES). The FARM ES program 
tracks and communicates a farm’s environmental achievements. The online tool 
combined with the program’s resources assist farms with pursuing continuous 
improvement in ways that align with business goals. Some of the program’s key 
features include:

•	 Strong scientific basis with periodic updates.

•	 Implemented by a network of trained, 2nd party evaluators.

•	 Offers farms resources for continuous improvement.

•	 Enables supply chain reporting and collaboration.

Abstract 

Introduction
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Dairy cooperatives and proprietary processors in the United States are eligible to enroll 
in FARM Environmental Stewardship (ES). Their staff complete a training program to 
become certified, second-party evaluators. The training program is self-paced and 
online. It is composed of 7 discrete modules. The purpose of the training is to equip 
evaluators with knowledge on how to collect the data inputs and interpret results. The 
training encourages consistent program implementation across organizations involved 
in FARM ES.

Dairy cooperatives and processors can use the FARM ES Random Sampling Protocol 
to enroll a representative sample of their farms in the program. The protocol is based 
on a stratified random sampling method. The stratifying factors used in this protocol 
are: 1) quartile of Fat and Protein Corrected Milk (FPCM) produced on a dairy in a 
day, and 2) geographic region defined as the first 3 digits of the dairy zip code. In 
order to streamline the selection process for dairy cooperatives and milk marketing 
organizations, a Microsoft Excel spreadsheet has been created that performs the 
necessary calculations to select farms according to the protocol

FARM is implemented through a network of trained, second-party evaluators. 
Evaluations can be conducted on-site, remotely, or a combination of both approaches. 
The steps of an evaluation are generally:

1.	 Pre-Visit: The evaluator schedules a visit or phone call with the farm to conduct 
the evaluation. The evaluator provides the farm with resources and information to 
prepare, such as the FARM ES Evaluation Prep Guide.

2.	 Evaluation: Data is collected from the farm. The data is entered into the FARM ES 
platform through either the web portal or the app.

3.	 Results: The FARM ES platform provides the farm’s carbon and energy use footprints. 
The evaluator reviews the results with the farm and discusses considerations for 
improvement. 

Several resources have been developed and released as part of the FARM ES program 
to support evaluators and farmers during evaluations:

•	 The FARM ES User Guide helps evaluators and individual farmers input their data 
into the FARM ES platform. It explains which resources may contain the data on 
their farm, as well as answers common questions about how to interpret each 
measure. 

•	 The FARM ES Evaluation Prep Guide is a resource for farmers to learn about the 
program and prepare for an evaluation.

•	 The FARM ES Data Gathering Sheet facilitates process of collecting information 
by capturing all of the required data input into an Excel sheet or fillable PDF.
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Outputs

FARM ES estimates farm-level GHG emissions and energy intensity using a scientific, 
peer-reviewed model. The FARM ES model was generated out of a life cycle 
assessment (LCA) published in April 2013 (Thoma et al., 2013). The study collected 
data from 536 farms covering a wide range of management practices. Authors of the 
study published another paper that proposed using the lifecycle assessment results and 
narrowing down the inputs into a simplified model for on-farm use (Asselin-Balençon 
et al., 2013). The model is intended to create an accurate and representative tool for 
farmers to determine and potentially reduce their cradle to farm gate carbon footprint. 
The simplified model strongly reduces the farm specific data requirement from 162 
animal-rations in the detailed LCA survey to 12 feed rations for lactating cows, while 
explaining 91% of the variability in feed print and 98% of the variability in total footprint. 

The FARM ES evaluation includes key data inputs that highlight circular economy 
concepts – including ration composition and manure management strategies. The 
full list of data inputs is located at nationaldairyfarm.com. The following summarizes 
model inputs:

•	 Milk Production: total annual milk production, annual average protein and fat content.

•	 Herd Profile: average herd size, average % dry, calves / heifers raised on and off 
farm, cows.

•	 Energy Use: annual total energy used by category (electricity, diesel, gasoline, 
etc.), solar / wind generated.

•	 Feed: time spent on pasture, average daily DMI, ration breakdown on dry matter 
basis.

•	 Manure and Nutrient Management: types of manure management systems, use of 
digester or solid-liquid separation.

The evaluation results are life cycle based, representing all the GHG emissions 
and energy use associated with the farm’s milk production from cradle to farmgate. 
The emissions footprint is broken down by source: feed production, on-site manure 
management, on-site enteric fermentation, and on-site energy use. The energy results 
are divided into feed production and on-site energy.

“On-site” refers to dairy activities on the farm. If the operation purchases feed and does 
not engage in feed production activities, the output will still generate an estimate for 
the environmental impacts of the purchased feed. 

Results are compared to regional and national averages. These averages come 
from the industry’s LCA research. Benchmarks for feed production emissions are not 
available in the current version (Version 2.0) of the tool.

FARM ES supports farms in improving their environmental footprint in ways that align 
with business goals. The primary resource to aid in this effort is the FARM ES Reference 
Manual. The FARM ES Reference Manual offers science-based considerations on 
ration formulation, forage quality and concentrate management, manure management, 
energy efficiency as well as animal health, nutrition and cow comfort to achieve gains 

Results

Farm benefits
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Figure 1. Sample FARM ES output.

 
Figure 1. Sample FARM ES output. 

in productivity, feed efficiency, and GHG emissions intensity. In other words, the FARM 
ES Reference Manual offers ideas for management practices, technologies and other 
considerations that can help reduce on-farm GHG emissions and energy use in ways 
that make business sense. For example, improving herd health and optimizing ration 
formulations are key opportunities.

The FARM ES Reference Manual benefited from independent review and input by 
a panel of subject matter experts – the Technical Review Panel – led by the World 
Wildlife Fund (WWF). The panel’s goal was to ensure FARM Environmental Stewardship 
provides a best in class guide to support farmers in understanding the FARM ES results 
and to identify opportunities for improvement. The panel was comprised of farmers, 
academics, processors, and conservationist.

Additionally, use of FARM ES can lead to improved internal management systems. 
Farms must gather documents and records to complete the FARM ES evaluation: 
nutrient management plans, milk production records, crop production data, and more. 
Collecting and reviewing these records in one place is a chance to think about on-farm 
management in a new way. Farms report creating or improving systems to track data as 
a result of the FARM ES evaluation, which can enable better management over time.

Finally, FARM ES is an opportunity for a farm to demonstrate its commitment to natural 
resource stewardship. U.S. dairy farms improved their carbon footprint by 19% between 
2007 and 2017 (Capper and Cady, 2020). And they continue to innovate by adopting 
new technologies and management practices. FARM ES captures these efficiency gains 
and helps identify opportunities to continue the path toward continuous improvement. 
By addressing a topic that society views as an urgent natural resource risk – GHG 
emissions – the program helps strengthen consumer confidence and maintain U.S. 
dairy’s leadership position in the global marketplace.

Since program inception, the FARM ES evaluation has been implemented on more than 
1,800 farms by 38 different cooperatives and processors (Figure 2). With each FARM ES 
evaluation, farmers, cooperatives and processors can assess change over time, identify 
areas of operational improvement, and report progress to their customers. Indeed, dairy 
processors, retailers, and food service customers are making public commitments to 
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Figure 2. Farm enrollment in FARM ES by year of first evaluation.
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Figure 2. Farm enrollment in FARM ES by year of first evaluation. 

reduce the environmental footprint of their products. These commitments include targets 
to reduce the GHG emissions of their entire supply chain beginning at the farm level. 
To meet those targets, dairy buyers are asking cooperatives and dairy processors to 
provide aggregated farm-level data on GHG emissions. 

Cooperatives and dairy processors can use FARM ES to collect on-farm GHG emissions 
data in a consistent and streamlined way; helping dairy farmers and the entire U.S. dairy 
value chain demonstrate its commitment to environmentally responsible production.
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Traditionally, the estimation of the 24-hour fat content from a one-milking sample has 
required conducting a large study with multiple samples during the recording day 
from thousands of cows from different herds and milking intervals. In this study, we 
show how a large amount of practical data can be used for creating a local calculation 
method without additional samples. In the Finnish case, some 7.5 million samples with 
data on preceding milking intervals were used, combined with what we know about 
the analysed milk composition and about the individual cows. The results are also 
compared from the point of view of how well they alleviate the differences between 
milking times and intervals.

This paper describes the current status with 24-hour yield calculations in the Finnish 
milk recording system, as well as the historical reasons behind the choices made. 
The results of each method are also shortly analysed. The methods are found to be 
working reasonably well, but not perfectly. New correction factors were calculated out 
of the local data set.

Keywords: Milk recording, conventional milking, 24-hour yield calculation.

In the Finnish milk recording, owner sampling has been common practice since the 
1980’s, and appr 95% of all herds now record by that method, with their own private 
recording equipment. At the same time, 90% of all samples are reportedly taken 
from one milking only. Farmers are also responsible for some 90% of milk recording 
data capture. In September 2019, 40.0% of all recordings during the previous rolling 
12-month period came from automatic milking. This article presents the 24-hour yield 
calculation methods currently in use.

Abstract

Summary

Introduction
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Up until 2003, the only available sampling method in Finland was proportional sampling. 
24-hour yields were simply calculated by adding up milk weights and using the analysed 
values as they come. 

This approach, however, started to be problematic due to three main reasons. Firstly, 
in a farmer-recording system it became evident that many samples were in fact not 
exactly proportional between the evening and morning milkings. Secondly, the results 
showed that a number of farmers were taking samples from one milking only. And the 
third reason was the advent of automatic milking which made it impossible to continue 
the old way.

For these reasons, it was decided to allow one-milking sampling starting April 2003.

In traditional milking systems, milk weights are measured at two consecutive milkings 
(or three, if the cows are milked thrice per day). Some 10% of all herds claim to take 
proportional samples, and no correction is applied to their laboratory analyses. For 
fat content in one-milking samples from traditionally milked herds, the Delorenzo and 
Wiggans (1986) correction is applied with the received factors.

In automatic milking systems, the milk weights are collected during a 96-hour period 
and these results are used for calculating a 24-hour yield for each cow (Lazenby et 
al., 2002). In this calculation, the preceding intervals are taken into account to adjust 
to uneven individual cow measurement periods.

The fat and protein yields, however, are estimated on the basis of a one-milking sample, 
using data of only two preceding milkings (Peeters and Galesloot,2002). This method 
was also tried for milk weights but some herds with irregular cow traffic had a lot of 
problems with that, so the approach was changed in 2016. Also, the original Peeters 
and Galesloot method was found to produce slightly underestimated fat contents when 
compared to dairy deliveries, so in 2017, the method was updated by the corrections 
suggested by Roelofs et al. (2006), adding factors like stage of lactation, parity, and 
hour of the day to the equation.

To evaluate how the methods are working, a very simple comparison was made with 
average

24-hour yields produced by each method. The results for the whole Finnish dairy cow 
population are shown in table 1. In general, the differences between the methods are 
small. 

However, we notice here that the calculation does not entirely cover the difference 
between fat contents in morning and evening milk. The correction factors used are 
already 33 years old and are based on data from a significantly lower yield level. Typical 
Finnish feeding also produces high milk fat contents which is maybe not entirely in 
keeping with the data used for making these formulae.

Automatically milked cows also tend to obtain a lower 24-hour fat content than cows 
from conventional milking systems. This was presumed to be due to higher milk 
yield, but due to the fact that the automatic milking herds have a significantly higher 
proportion of Holsteins, the results were recalculated for Holstein breed only (Table 
2). Here the difference between morning samples and samples from automatic milking 
was slightly smaller.

Historical 
overview

Currently used 
methods

Evaluation of 
current methods
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The accumulated 
data set

Since 2003, a data set of 7.5 million recordings has accumulated with data on the 
time of the sampled and preceding milking as reported by the farmer, the lab analysis 
results, and the 24-hour milk yield. Grouped according to the preceding interval, the 
analysed fat content gives a nice sigmoid curve with the highest fat content found after 
a 540 to 630 minutes’ interval (9 to 10.5 hours) and the lowest at 810 to 930 minutes 
(13.5 to 15.5 hours).

The results were also divided into subgroups according to lactation number, phase 
of lactation, and breed. The effect of the preceding milk interval on milk fat seems to 
be bigger with older cows and in the beginning of lactation. It was also bigger with 
Ayrshire cows as compared with Holsteins. At this point, however, the decision was 
made not to take these factors into account when calculating new correction factors.

 
Table 1. Corrected and recorded 24-hour averages by method, all cows. 
 

  Average result 
Sampling scheme Nr of samples Milk, kg Butterfat, % Protein, % Cell count 
One-milking sample (Z), 
milking time 4-10 AM 

255,461 29.8 4.30 3.58 157 

Z sample, milking time 2-8 
PM 

309,974 30.2 4.51 3.61 187 

Proportional (P) sample 112,620 29.6 4.41 3.61 167 
Z sample, automatic milking 370,908 33.4 4.23 3.56 214 

 
 
Table 2. Corrected and recorded 24-hour averages by method, Holstein cows only. 
 

  Average result 

Sampling scheme 
Nr of 

samples Milk, kg 
Butterfat, 

% 
Protein, 

% 
Cell 

count 
One-milking sample (Z), 
milking time 4-10 AM 116,009 31.3 4.17 3.52 161 
Z sample, milking time 2-8 PM 142,204 31.9 4.36 3.56 184 
Proportional (P) sample 45,191 31.4 4.25 3.55 167 
Z sample, automatic milking 231,346 34.8 4.14 3.52 216 

 

 
Table 3. Average analysed milk fat by preceding interval class, 2003 - 2020 
 

Interval before 
sampling, minutes 

Number of 
samples 

Average interval in 
the class 

Average fat content 
analysed, % 

<510 93,577 495 4.20 
510-540 19,523 525 4.70 
540-570 111,268 555 4.79 
570-600 253,807 585 4.83 
600-630 1,461,587 615 4.75 
630-660 919,968 645 4.66 
660-690 1,168,683 675 4.56 
690-720 223,877 705 4.42 
720-750 517,447 735 4.28 
750-780 212,428 765 4.16 
780-810 924,014 795 4.12 
810-840 698,463 825 4.09 
840-870 1,104,778 855 4.07 
870-900 154,561 885 4.05 
900-930 77,024 915 4.07 
>930 26,977 945 4.13 

 



174

New approach to predicting the fat content in 2x milking 

Proceedings ICAR Conference 2021, Leeuwarden

The results above were turned into a simple set of correction factors, dependent solely 
on the preceding interval. In order to do this, two assumptions were made:

1.	 A 24-hour recording day was assumed. This way, we can deduce the second 
milking interval from the one we know and mirror the fat percent for that milking.

2.	 Milk secretion rate was assumed to be constant around the 24-hour period. This 
allows us to deduce the share of the 24-hour yield produced at each milking.

These assumptions allow us to create the new correction factors by mirroring the milk 
yield and milk fat content in the milking whose actual data we have not got. This way, 
we get the following formula:

Calculation of new 
factors

Figure 4. The obtained correction factors compared to the DeLorenzo and Wiggans 
(1986) factors

 
Table 4. Calculation of the mirrored milking and the correction factors. 
 

Interval 
before 
sampling, 
minutes 

Average fat 
in the 

sampled 
milking, % 

Share of 24-
hour milk 

yield in the 
sampled 
milking 

Mirrored 
interval, 
minutes 

Average fat 
in the 

mirrored 
milking, % 

Calculated 
24-hour 

average fat, 
% 

Correction 
factor 

<510 4.21 0.34 >930 4.14 4.16 0.989 
510-540 4.77 0.36 900-930 4.08 4.33 0.907 
540-570 4.82 0.39 870-900 4.05 4.35 0.903 
570-600 4.84 0.41 840-870 4.07 4.38 0.906 
600-630 4.76 0.43 810-840 4.09 4.37 0.919 
630-660 4.66 0.45 780-810 4.12 4.36 0.936 
660-690 4.56 0.47 750-780 4.16 4.35 0.953 
690-720 4.43 0.49 720-750 4.29 4.36 0.984 
720-750 4.29 0.51 690-720 4.43 4.36 1.016 
750-780 4.16 0.53 660-690 4.56 4.35 1.046 
780-810 4.12 0.55 630-660 4.66 4.36 1.059 
810-840 4.09 0.57 600-630 4.76 4.37 1.070 
840-870 4.07 0.59 570-600 4.84 4.38 1.076 
870-900 4.05 0.61 540-570 4.82 4.35 1.073 
900-930 4.08 0.64 510-540 4.77 4.33 1.062 

>930 4.14 0.66 <510 4.21 4.16 1.006 
 
 

 
 
Figure 4. The obtained correction factors compared to the DeLorenzo and Wiggans (1986) factors 

 
Table 4. Calculation of the mirrored milking and the correction factors. 
 

Interval 
before 
sampling, 
minutes 

Average fat 
in the 

sampled 
milking, % 

Share of 24-
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Table 5. Analysed and corrected fat in milk samples between September 2020 and March 2021. 
 

Sample type 
Number of 
samples 

Analysed 
protein, % 

Analysed fat, % 
(direct average) 

24-h fat, % 
(weighted avg) 

Morning samples 54,486 3.66 4.25 4.52 
Evening samples 66,684 3.70 4.73 4.48 
Proportional 
samples 22,528 3.68 4.44 4.45 

 
 

Correction factor = [(Sampled milk * sampled fat) + (Mirrored milk * mirrored  
fat)]/(sampled milk + mirrored milk)

Comparing the obtained correction factors with those used in the original DeLorenzo 
and Wiggans method, we can see that the new factors form more of a sigmoid curve 
than a straight line. They will thus correct the analysed results with greater effect than 
the old method, especially when the preceding interval is around 10 or 14 hours.

These new factors were taken into use in the Finnish milk recording system in July 
2020. Looking at the results now, we have managed to bridge the gap in 24-hour fat 
content between evening and morning samples. It is also easy to do a recalculation 
of the factors on a regular basis, and make changes if the situation has changed.

The earlier 24-hour calculation methods are performing on a satisfactory level. However, 
it seems that the historical fat correction factors needed recalculation to make the 
obtained estimates more accurate. The new factors were obtained from a large data 
set by mirroring the milking whose data did not exist. The factors have been taken 
into use, and are performing better than the old ones. They can easily be recalculated 
in the future.
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In France, the Dairy Cattle Milk Recording Guidelines allows 8 protocols, each with 
6  levels of recording intervals (between 4 to 9 weeks), approved by ICAR. The 
percentage of cows recorded with A protocol has decreased by 42 points during the 
last twenty years (from 92% in 2000 to 48% in 2020). Milk Recording Organizations 
have indeed wished to adapt and simplify protocols in keeping with the changes in 
measuring equipment, new services, etc. 

The aim of this study was to determine the effect of all qualification methods on 
prediction accuracy of 305-day production traits milk yields, fat yields, protein yields, 
fat%, protein% (a lactation model is used for the French genetic evaluation) and to 
calculate and/or update the different weighting factors applied to each method in 
genetic evaluation. 

Two datasets have been created: one with 19047 lactations reference-305 days A4 
method, another with 8250 lactations reference-305 days R4 method. 

The methodology used for this study has consisted in simulating T4, Z4, C*4, Z*4 
methods from reference A4 method and R*4 method from reference R4 method. 

A8, T8, Z8, C*8, Z*8, R8, R*8 methods have been obtained by taking into account 
only one out of two test-day per lactation.

The 305-day production traits estimated for each simulated method were compared 
to those of the reference method. The accuracies of the other methods (5, 6, 7 and 
9) have been extrapolated by means of a linear regression model. The calculation of 
the weighting factors for all methods took into account the coefficient of determination 
(R²) and the repetability level of each trait.

The results of accuracy (R², bias and standard deviation of bias) underlined the fact 
that R2 is lower for all traits for 8 methods compared to 4 methods. 

For example, R2 is equal to 0.945 and 0.861 for fat yields and percent for T8 method 
compared to 0.989 and 0.962 for T4 method. Moreover the loss of accuracy is lower 
for R8 method compared to A8 method.

The comparison between the old and the new weighting factors for each lactation 
qualification method brought out an overall underestimation for milk yields, fat yields 
and protein yields and an overestimation for fat%, protein% with the old factors. 

For example, the new milk yields weighting factor for A8 method is equal to 0.95 
compared with 0.93 previously. The weighting factors obtained for new methods are 

Summary
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low, mainly for fat% for which it is equal to 0.44 for C*9 method. The weighting factors 
will have an impact on the accuracy of the cows’ index, low weighting factors leading 
to reduced accuracy.

Keywords: Milk recording, protocols, accuracy, weighting factors.

In France, the percentage of dairy farms which uses A protocol is for the first time 
below 50% in 2020 with exactly 48% of herds. This percentage decreases each year.

Alternated one-milking recording (T) and one-milking sampling with milk weights from 
more than one milking (Z) represent 27% of herds, AMS protocols 13% and B protocols 
by farmers represent 12% of herds. 

In this context, French Milk Recording Organizations (MRO) wish to answer 
expectations of farmers, changes in measuring equipment, new services…, and to 
simplify, reduce the cost of milk recording by using ICAR standard and method, with 
a quality level for genetic evaluation and cow management.

Many protocols and methods are proposed in France and the aim of this study is to 
evaluate the accuracy of these protocols and methods:

•	 on lactation reference-305 days from relevant data sets in comparison with A4, 
AR4 methods (gold standard) by calculation R2, bias, standard deviation of bias 
on criteria milk yields, fat%, fat yields, protein%, protein yields for each method,

•	 and to calculate weighting factors for genetic evaluation. 

A lactation model is used in France for genetic evaluation and it was necessary to 
update and to calculate weighting factors from new relevant data sets. 

Data were collected by Milk Recording Organizations, from herds in A4 scheme with 
use of Electronic Milk Meter Lactocorder and recording of one milk weight, one sample 
at each milking (pm and am) and from herds in R4 scheme with use Automatic Milking 
System with recording of samples for at least two milkings per test day. 

Several criteria have been used to select raw data from both datasets. 

For the A4 scheme dataset, recordings with missing information, with too large a 
difference in milk weight between milkings, before 5 and after 399 days in milk (DIM), 
from lactation ranks greater than 10 and with daily recorded values out of permitted 
range (defined in ICAR Guidelines, 2017) were excluded. 208 204 test-day records 
from Holstein cows were thus retained. 

For the R4 scheme dataset, recordings with missing information, with daily recorded 
values out of permitted range (defined in ICAR Guidelines, 2017), without 24-hour 
reference and during a sampling period of less than 12 hours were excluded, as well as 
protein and fat percent from sampled milkings carried out within 4 hours of a previous 
sampled milking. 380 170 test-day records were thus retained, from Holstein (74%), 
Montbeliarde (22%), Normande, Simmental and Brown cows breed.
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Estimation of the 
lactation accuracy 
for each recording 
method

Firstly, the data sets were used to estimate 24-hour milk yields, fat percent and fat 
yields, protein percent and protein yields for each recording method. 

The A4 prrotocol data set was used to simulate A4 (reference method), T4 and Z4 
(adjustment of milk yield and/or fat and protein yields with the ICAR approved Liu’s 
method) and C*4 (constant one-milking recordings with adjustment of milk, fat and 
protein yields with the Liu’s method) method. It’s a new protocol used in France since 
2020 (Leclerc. et al., 2019).

The R4 protocol dataset was used as a reference and to simulate a R*4 method by 
adjusting fat percent with the ICAR approved Peeters and Galesloot’s method (Peeters, 
R., Galesloot, P.J.B., 2002) for recordings with only one single sample during the 
sampling period. It’s a new protocol used in France since 2019 (Minery., et al., 2018).

The R*4 dataset was obtained by selecting the first sampled milking as well as the 
two previous non-sampled milking per cow per test day, leaving 319 076 first sampled 
milkings. 

The A4 and R*4 data sets were split into two independent data sets: a training data set 
(138 222 and 212 522 records for the A4 dataset and the R*4 dataset respectively), 
used to estimate the Liu’s and Peeters and Galesloot’s regression coefficients and a 
validation dataset (69 982 and 106 554 records records for the A4 data set and the R*4 
data set respectively) on which the regression coefficients were applied to calculate 
24-hour production traits for each method. 

In order to estimate 305-day production traits for each method with a 4 week-interval 
between recordings, each lactation had a minimum of 7 test day records separated by 
less than 95 days, a first record before 60 DIM and a last record after 280 DIM (and 
before 399 DIM for the R4 and R*4 data sets). 

19 047 lactations for the A4 data set, 8 250 lactations for the R4 data set (Table 1) 
and R*4 data set respectively fulfilled these conditions. 

For each method with a 8 week-interval between recordings, only one out of two 
recordings were taken into account to estimate 305-day production traits, starting 
from the first or the second lactation record and the same conditions were required, 
except for the minimum of test day records which was lowered to 4. 

The statistical analysis was carried out by comparing the 305-day lactation traits thus 
obtained for every method to the reference 305-days lactation traits (R4 for R8, R*4 
and R*8 and A4 for every other methods). The results of the accuracy (R², mean bias, 
standard deviation of bias) published for each method correspond to the lowest R² value 
and the highest mean bias values (in absolute value) obtained for each method on 
the validation data sets.

Table 1. Description of the initial datasets for analysis on lactation 
 

Criteria A4 Data set  R4 Data set  
# 305-day lactations 19 047 8 250 
# Cows  14 396 7 889 
Average milk yields (kg)  9 172 9 495 
Average fat% 3.85 3.84 
Average fat yields (kg) 351 361 
Average protein% 3.12 3.21 
Average protein yields (kg) 285 303 
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The R² of the other methods (5, 6, 7 and 9) have been extrapolated from the 4 and 8 
methods results by means of a linear regression model. 

In the French genetic evaluation of production traits, each trait is weighted according 
to the lactation number (1 for a first lactation and lower for future ones) and according 
to its coefficient of determination (R²) and its repeatability level (Rep.). The aim of the 
study was to estimate the latter weighting factor for each method, according to the 
following formula:

Weighting factor= 1 – Rep. / [1 - Rep + (1 - R2 / R2)]

with Rep= 0.5 for all yields and 0.7 for fat and protein percent. 

Example: A8 method for milk yields 

R²= 0.972 and Rep.= 0.5

weighting factor= 1 - 0.5 / [1 - 0.5 + (1 - 0.972 / 0.972)]  = 0.95 (applied for this lactation 
on genetic evaluation).

The analysis of the coefficients of determination (R²) on 305-day lactation traits for the 
different methods shows (Table 2):

•	 a lower R² for fat yields and percent compared to the other traits;

•	 a lower R² for all traits for 8 methods compared to 4 methods. For example, R² is 
equal to 0.945 and 0.861 for fat yields and percent for T8 method compared to 
0.989 and 0.962 for T4 method;

•	 a higher loss of accuracy for adjusted constant one-milking recording (C) compared 
to alternated milking. For example, R² for C*4 method is obtained with adjusted 
constant one-milking recording. It is equal to 0.853 for fat% compared to 0.962 for 
fat% for T4 method;

•	 a lower loss of accuracy for R8 method compared to A8 method.

The analysis of the mean bias on lactation traits for the different methods shows 
(Table 3) that as for R², bias are higher for 8 methods compared to 4 methods.

The different R² and bias between R and R* methods for non-adjusted traits (such 
as milk and protein yields and percent) are due to the fact that the records taken into 
account per lactation could differ between R and R* data sets, leading to different 
305-days lactation traits. 

Moreover, the lowest R² value and the highest mean bias values obtained for 8 methods 
correspond mostly to 305-day lactation traits estimated from lactation starting from the 
second record.
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Table 2. Coefficient of determination (R²) for each method. 
 

Recording method Milk yields Fat yields Protein yields Fat% Protein% 
A4, R4 1 1 1 1 1 
Z4 1 0.968 0.987 0.976 0.989 
T4 0.997 0.989 0.997 0.962 0.997 
R*4 0.997 0.954 0.997 0.878 0.997 
C*4 0.966 0.940 0.971 0.853 0.955 
A8 0.972 0.955 0.966 0.902 0.946 
R8 0.980 0.970 0.979 0.941 0.963 
Z8 0.972 0.934 0.956 0.876 0.927 
T8 0.967 0.945 0.963 0.861 0.940 
R*8 0.979 0.930 0.978 0.845 0.961 
C*8 0.925 0.876 0.928 0.749 0.894 

 
 
Table 3. Maximum mean bias (standard deviation of bias) for each method. 
 

Recording method 
Milk yields 

(kg) 
Fat yields 

(kg) 
Protein yields 

(kg) 
Fat% 

% 
Protein% 

% 
A4, R4 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
Z4 0 (0) 0.10 (13.3) 0.27 (6.23) 0.00 (0.14) 0.00 (0.06) 
T4 11.1 (155) 0.85 (12.2) 0.39 (4.34) 0.01 (0.10)  0.00 (0.02) 
R*4 30.6 (107) 0.06 (15.7) 0.88 (3.4) -0.01 (0.15) 0.00 (0.01) 
C*4 21.3 (263) 1.11 (18.4) 0.48 (7.5) 0.01 (0.18) 0.00 (0.03) 
A8 -34.0 (238) -2.32 (15.1) -0.14 (10.1) -0.02 (0.15) 0.01 (0.03) 
R8 -149.4 (285) -6.11 (12.5) -3.13 (8.6) 0.01 (0.06) 0.01 (0.04) 
Z8 -34.0 (238) -2.22 (18.3) 0.30 (10.0) -0.03 (0.18) 0.01 (0.07) 
T8 28.6 (321) 1.74 (15.5) 0.44 (9.0) 0.03 (0.14) 0.01 (0.04) 
R*8 -124.4 (291) -5.75 (19.6) -2.38 (8.9) 0.00 (0.16) 0.01 (0.04) 
C*8 46.2 (407) 1.83 (22.3) 0.55 (12.7) 0.04 (0.21) 0.01 (0.06) 

 
 
Table 4. New weighting factors for each method. 
 

Recording method Milk yields Fat yields 
Protein 
yields Fat% Protein% 

A4, R4 1 1 1 1 1 
A5, R5 0.99 0.98 0.98 0.92 0.96 
A6, R6 0.97 0.96 0.97 0.85 0.92 
A7, R7 0.96 0.93 0.95 0.79 0.88 
A8, R8 0.95 0.91 0.93 0.73 0.84 
A9, R9 0.93 0.89 0.92 0.68 0.81 
Z4 1 0.94 0.97 0.92 0.96 
Z5 0.99 0.92 0.96 0.85 0.92 
Z6 0.97 0.91 0.95 0.79 0.87 
Z7 0.96 0.89 0.93 0.73 0.83 
Z8 0.95 0.88 0.92 0.68 0.79 
Z9 0.93 0.86 0.90 0.63 0.76 
T4 0.99 0.98 0.99 0.88 0.99 
T5 0.98 0.96 0.98 0.82 0.95 
T6 0.96 0.94 0.96 0.76 0.90 
T7 0.95 0.92 0.95 0.70 0.86 
T8 0.94 0.90 0.93 0.65 0.83 
T9 0.92 0.88 0.91 0.6 0.79 
R*4 1 0.91 0.99 0.68 0.99 
R*5 0.99 0.90 0.98 0.67 0.96 
R*6 0.97 0.89 0.98 0.65 0.93 
R*7 0.96 0.88 0.97 0.64 0.91 
R*8 0.95 0.87 0.96 0.62 0.88 
R*9 0.93 0.86 0.95 0.61 0.86 
C*4 0.93 0.89 0.94 0.64 0.86 
C*5 0.92 0.86 0.92 0.59 0.82 
C*6 0.90 0.83 0.90 0.55 0.79 
C*7 0.88 0.81 0.89 0.51 0.75 
C*8 0.86 0.78 0.87 0.47 0.72 
C*9 0.84 0.75 0.85 0.44 0.69 
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Discussion and 
conclusions

The comparison between the new weighting factors (Table 4) and the previous ones 
(Table 5) for each method brought out an overall underestimation for milk, fat and 
protein yields and an overestimation for fat and protein percent with the previous factors. 

For example, the new milk yield weighting factor for A8 method is equal to 0.95 
compared with 0.93 previously and the new fat% weighting factor for A8 method is 
equal to 0.73 compared with 0.78 previously. 

The weighting factors obtained for new C* protocol are low mainly for fat percent for 
which it is equal to 0.44 for C*9 method.

Regarding the context in milk recording, the willingness of France Genetics Breeding 
(FGE) is to propose all the protocols and methods approved by ICAR to the farmers. 
The wish is to simplify and to reduce the cost of Milk Recording mainly in big herds 
and AMS Robots.

After analyzing the results of French studies (2018 and 2019) about respectively, a 
new AMS protocol with only one sample (R*), a new constant one-milking recording 
protocol (C*), the FGE board has proposed a program of implementation of these 
protocols in the dairy cattle milk recording Guidelines by the end of 2019 with conditions:

•	 to use the Liu’s method for estimating 24-hour yields with C* protocol;

•	 to use the Peeters and Galesloot’s method for estimating 24-hour fat percent and 
yields with R* protocol;

•	 to describe Standard Operating Procedure (FGE Guidelines, 2019);

 
Table 5. Previous weighting factors for each method. 
 
Recording 
method 

Milk 
yields 

Fat 
yields 

Protein 
yields Fat% Protein% 

A4, R4 1 1 1 1 1 
A5, R5 0.99 0.98 0.99 0.96 0.98 
A6, R6 0.98 0.96 0.98 0.92 0.96 
A7, R7 0.96 0.93 0.95 0.85 0.93 
A8, R8 0.93 0.87 0.91 0.78 0.89 
A9, R9 0.90 0.81 0.87 0.71 0.85 
Z4 1 0.96 0.99 0.94 0.99 
Z5 0.99 0.94 0.98 0.90 0.97 
Z6 0.98 0.91 0.96 0.85 0.95 
Z7 0.96 0.85 0.94 0.76 0.92 
Z8 0.92 0.81 0.90 0.71 0.88 
Z9      
T4 0.99 0.96 0.99 0.94 0.99 
T5 0.98 0.94 0.98 0.90 0.97 
T6 0.97 0.91 0.96 0.85 0.95 
T7 0.96 0.85 0.94 0.76 0.92 
T8 0.92 0.81 0.90 0.71 0.88 
T9      
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•	 to define weighting factors (for milk yields, fat percent, fat yields, protein percent, 
protein yields) among the level of individual lactation qualification model use by 
FGE and applied for genetic evaluation.

It was necessary to update the old weighting factors from new relevant datasets and 
to calculate factors for all protocols and methods.

The new weighting factors will have an impact on the accuracy of the cows’ index, low 
weighting factors leading to reduced accuracy, the main goal is to improve the quality 
of genetic evaluation in accordance with ICAR Guidelines. 

Regarding changes and evolutions in ICAR Guidelines, another FGE study project 
is scheduled in 2021 about the implementation of the new Liu’s method (Kuwan and 
Bunger, 2019). 
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During last 15 years different researchers were developing new calibration models 
linked to milk main components such as fatty acids or minerals, milk biomarkers such 
as ketone bodies in milk or inflammation indicators or complex components such 
as energy deficit, ketosis, mastitis, CH4 or pregnancy with the help of mid-infrared 
(MIR) spectrometry spectral data. A major provider of MIR services is European Milk 
Recording (EMR), an umbrella organisation created by former OptiMIR milk recording 
organisations (MROs), which offer MIR standardisation and predictions. EMR’s 
members are continuously supporting the creation and maintenance of MIR models by 
collaborating and participating in research projects. MROs having access to milk MIR 
spectra and prediction models have been increasingly integrating these predictions 
into services for dairy farmers. Ketosis is a metabolic disorder in ruminants caused by 
extremely negative energy balance (EB) in early lactation. It may induce an increase in 
milk fat percentages and ketone bodies as well as a rapid decrease in milk yield, body 
weight and feed intake. It is also known for causing secondary diseases and fertility 
problems. Ketosis risk and negative EB can be determined on cow level by using 
ketone test kits, blood analysis or by milk MIR predictions such as BHB or acetone. 

The new idea of KetoMIR was the modelling of ketosis risk based on ketosis diagnosis 
from veterinaries as reference and milk MIR spectra absorptions as input in order to 
provide a better indicator in the milk recording service. The first implementation was 
KetoMIR1 developed by LKV Baden-Württemberg (LKV B.W.). It was based on milk 
components predicted from standardised milk MIR spectra and is routinely applied by 
the MROs LKV B.W. and LKV Austria since 2015 respective 2017. 

It has to be underlined that until then in literature no information could be found of 
direct prediction of ketosis risk based on routine MRO spectral and diagnosis data. 
Since 2018 KetoMIR2 is developed in both MROs within the D4Dairy project. It is a 
logistic regression model based on standardised milk MIR spectra, sampling moment, 
lactation number and breed as input and veterinary diagnosis as ketosis reference. 
The spectra have been pre-processed following the OptiMIR/EMR procedure and 
corrected for days in milk by Legendre polynomials. 
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The optimal selection of input parameter was done by using the glmnet R package with 
lasso method and 10 fold CV. Applied to an external validation set of 11 representative 
farms the model showed good specificity (0.84) and medium sensitivity (0.72). The 
KetoMIR2 risk probability shows high correlation with energy deficit, blood BHB and 
milk yield. KetoMIR2 provides three classes of ketosis warning such as not, moderately 
and severely endangered and can also be used in herd management to detect general 
feeding deficiencies. Currently KetoMIR2 is evaluated by feeding advisors of LKV B.W. 
in a monthly EB report called EMIR. Here it is contrasted with other EB MIR predictions 
like KetoMIR-1, EB-NEL (as developed by LKV B.W., DLQ and optiKuh) and fatty acid 
groups. At LKV Austria KetoMIR-2 is being evaluated additionally with blood ketotest 
kits sampled in 2020.

Keywords: KetoMIR, ketosis risk, ketosis detection, energy balance, NEL, early 
lactation, MIR milk spectra, dairy cow, dairy farming, optiKuh, D4Dairy, EMR.

Ketosis is the number one problem in early lactation. In this phase, up to 6 weeks, 
a greatly increased energy requirement for milk production dominates. The effect is 
additionally reinforced by breeding for higher performance. The energy deficit is covered 
by mobilizing body fat. This leads to an increase in long-chain, mainly unsaturated fatty 
acids, which are summarized under the term “Preformed Fatty Acids”, and unesterified 
fatty acids (NEFA). In addition, the production of short-chain and medium-chain fatty 
acids, the de-novo fatty acids, is falling. In extreme cases, this leads to an overload 
of the liver, there is an accumulation of ketone bodies in the blood as well as in urine 
and milk. These are mainly acetone, beta-hydroxybutyrate (BHB) and citrate (Grelet 
et al., 2016). The classic detection methods are an increased fat-protein quotient 
above 1.5 in dairy breeds and 1.4 in Simmental cattle. A laboratory test of the BHB 
concentration in the blood is used as a reference finding; here the limit values are 1.2 
to 1.4 for subclinical cases and 3 mmol for clinical cases. 

BHB can also be measured in milk and urine; the limit values here are 0.2 and 0.5 in 
milk and 4 mmol/l in urine. In the meantime, inexpensive rapid tests for blood, milk 
and urine are also available here. Acetone is also an indicator, the greatly increased 
concentration in breath, milk and urine leads to the typical fruity-sour smell. There are 
test methods for milk, the limit values are 0.25 or 2 mmol/l. Acetone is highly volatile, so 
the remaining concentration of the milk sample in the laboratory is often at the detection 
limit. Even severe weight loss can be used as an indicator if measured regularly. The 
new concept of KetoMIR is to offer a ketosis risk via milk recording samples that is 
more precise than e.g. the fat-protein quotient. With each milk recording sample, the 
farmer receives a herd screening which he can supplement with the above-mentioned 
methods. Participation in the OptiMIR project resulted for LKV B.W. and later also 
for LKV Austria in new possibilities of using MIR spectral data. IT processing and 
standardization was introduced in 2012. 

Algorithms for milk MIR components were further or newly developed, e.g. for fatty acids, 
minerals, BHB, acetone and citrate and are now available. The French tool CetoMIR, 
based on BHB and acetone, also showed the possibility of ketosis prediction based 
on MIR spectra. From around 2011, the voluntary collection of veterinary diagnoses, 
including ketosis diagnoses, has since been started on approx. 1,200 companies based 
on an 86-part, simplified key based on the model of the Austrian project. The KetoMIR 
concept consists of the combination of MIR spectra and veterinary diagnoses to predict 
the risk of ketosis and was the first known work in this direction at the time. Several 
parameters and concentrations of the above-mentioned MIR components were used. 
The development began at LKV B.W. 2014, built on 3 years of data availability and 
went into production at the end of 2015 (Werner et al., 2019). The milk analysis with 
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the help of MID infrared spectra (MIR) is a fast and inexpensive way to examine milk 
recording samples and tank milk samples on a large scale for the main component 
fat, protein, lactose and urea. 

The milk sample is screened by an infrared beam in so-called FTIR analysers and the 
respective concentration of the substances is calculated using the absorption spectrum 
obtained and algorithms. The principle is based on the specific interaction of the different 
wavelengths with the atomic bonds in the milk molecules. With this method, models for 
fine components such as fatty acids, minerals, lactoferrin (Soyeurt et al., 2009), BHB, 
acetone, citrate (Grelet et al., 2016), etc. have also been developed over the past 15 
years. In addition, models for complex characteristics such as energy deficit (Dale et 
al., 2019), ketosis (Werner et al., 2019), mastitis, methane emissions and pregnancy 
could be created. In contrast to the main components, however, a spectrum with long-
term stability is required for the latter features. MIR spectra are not uniform and not 
long-term stable. 

The reasons for the variability lie in different implementations of the manufacturers, 
tolerances of the components even with the same models as well as drift due to wear 
and tear, climatic fluctuations etc. This requires a correction by a standardization 
procedure (Grelet et al., 2015). In the standardization process, a distinction is made 
between manufacturer-specific processes such as those offered in the form of the Foss 
equalizer and Bentley stabilizer. In the OptiMIR project, a manufacturer‑independent 
process was developed which has been offered by the OptiMIR successor consortium 
European Milk Recording (EMR) since 2015. In the milk recording samples and milk 
quality area, the bias slope correction method is used, which determines correction 
factors using regular pilot samples and reference measurements. Various studies 
have also shown that EMR standardization can significantly increase the accuracy of 
the MIR models.

The binomial KetoMIR-1 model for the first 120 days of lactation used two reference 
classes: “healthy” for milk recording samples from Rind GMON BW farms for which 
no diagnoses and health-related losses are available. Spectra were classified as 
“ketotic” or “sick” with a ketosis diagnosis no more than 6 days after the milk recording 
samples. MIR milk components such as fatty acids, minerals, BHB, acetone, citrate, 
classic milk recording samples ingredients and fixed effects such as breed, lactation 
number, lactation week and milking time were used as input parameters. The GLMNET 
method in R was used to model a logistic regression. A new version of KetoMIR, 
KetoMIR-2 is currently being developed in the D4Dairy project and made ready for 
production. The following innovations are used compared to KetoMIR-1. Instead of milk 
MIR components, the MIR spectral data are used directly, using the pre-processing 
established in OptiMIR (standardization, 1st derivative, 212 wavelengths).

The integration of the lactation days takes place with the help of Legendre polynomials 
on the MIR spectra. The basics for KetoMIR-2 were developed in the course of 
modelling experiments at LKV B.W. already laid at the beginning of 2017. Through 
the establishment of spectral data processing and standardization at LKV Austria and 
Zuchtdata as well as EMR membership in 2017, the MIR spectral data and ketosis 
diagnoses available there were also usable. The collaboration offered the opportunity 
to create a more robust, cross-population and cross-manufacturer MIR model. For the 
KetoMIR-2 calibration, data from the period 2012 to 2017 from 10,079 farms with ketosis 
diagnoses were used. For the milk recording samples with the classification “ketosis”, 
1,638 data sets were used with a spectrum of + 14 days around the day of diagnosis. 
For the milk recording samples with the classification “healthy”, 112,545 data sets were 
used without diagnosis within 60 days of the sample date and without health‑related 
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losses. For external test purposes, 11 farms with a high prevalence of ketosis were 
removed, 4 from LKV AT and 7 from LKV B.W. As with KetoMIR-1, fixed effects such 
as breed, lactation number and the trial period were included and a logistic regression 
was modelled using the GLMNET/Lazzo method with 10-fold cross‑validation. 

The ketosis probability was calculated for the calibration and test data and the 
accuracy via sensitivity and specificity was determined using the 0.5 limit values. The 
model achieved a sensitivity of 0.72 and a specificity of 0.84 in the test. The two-class 
model was converted for use in a traffic light system with the classes healthy (green), 
subclinical/endangered (yellow) and clinical/highly endangered (red). Assuming a 20% 
share of subclinical cases and a 5% share of clinical cases in the first 6 weeks, the 
new class limits were set at 0.5 and 0.75 using a GMON database for one year. The 
KetoMIR1 classes were applied to the 2016 GMON annual inventory for evaluation. The 
representation of the class proportions for the first weeks of lactation shows the expected 
greatly increased proportion of endangered and highly endangered classifications. One 
can also see that the dairy breeds are more affected than the dual-purpose Simmental 
cattle. The representation of the class proportions via the lactation numbers shows that 
the heifers and cows from the 3rd lactation are more severely affected than the cows in 
the 2nd lactation. The evaluation of the mean 305‑day performance over the KetoMIR 
classes and lactations gives the following picture. In general, the 305-day performance 
in the classes “at risk” and “highly endangered” is lower than in the “healthy” class. So, 
there is already a general, expected depression in performance. 

The course of the production mean values in the respective classes over the lactation 
numbers follows the general course of production that is to be expected for the life of 
the cows with a lower production in Brown Swiss and Simmental cattle. In the KetoMIR 
population evaluation, the prevalence of other diseases in the same lactation was 
calculated based on the KetoMIR classification of the first milk recording result in the 
classes “at risk” and “highly endangered” relative to the class “healthy”. The value for 
the diagnosis of cycle disturbance is only slightly higher at 1.2. First calculations and 
evaluations of genetic correlations of the KetoMIR-1 index showed the potential for 
use in breeding selection (Hamann et al., 2017).

The final KetoMIR-2 calibration model achieved a mean sensitivity and specificity of 
0.76 and 0.84 in the calibration and 0.72 and 0.83 in the external test. A differentiated 
analysis revealed a sensitivity and specificity for the population groups LKV-AT of 0.72 
and 0.81 and LKV-BW of 0.72 and 0.84, respectively. There were also differences for 
the racial groups. Here an accuracy of 0.76 and 0.83 was obtained for Holstein. For 
Brown Swiss it was 0.72 and 0.81 respectively, while for Simmental cattle a lower 
sensitivity of 0.58 compared to a specificity of 0.88 was determined. This is probably 
due to the lower prevalence of ketosis in Simmental cattle. 

In contrast to KetoMIR-1, the cumulative probability curves of KetoMIR-2 showed a 
very different shape over the lactation weeks. The procedure for defining the threshold 
values for the traffic light classes therefore had to be adapted. An extensive Pearson 
correlation analysis of the KetoMIR-2 probability against classic MLP results and the 
concentration of new MIR ingredients was carried out. Pearson Correlation to the FEQ 
was 0.46, the MIR predictions with a closer relationship to energy deficit and ketosis 
resulted in significantly higher values: e.g. for energy balance NEL -0.79; Blood BHB 
0.6; Blood NEFA 0.79; Blood glucose -0.76; Acetone in milk 0.65; C18_1CIS9 as the 
monounsaturated fatty acids 0.73; C12 -0.44, sodium 0.35. This fits well with the known 
physiological processes and speaks in favour of KetoMIR-2 as an improved alternative 
to KetoMIR-1. A need for optimization is still seen in the definition of the class limit 
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values. The KetoMIR1-Index has been integrated in the online herd manager in section 
“Metabolism” at LKV B.W. since 2015 as well as at Zuchtdata/LKV-Austria since 2017. 

In the “Overview” mask, the historical course of the class shares at herd level as well 
as the classification at animal level is displayed for the last 12 milk recording results. 
Flock shares in the class “endangered” over 20% are coloured yellow, shares in the 
class “highly endangered” over 5% are coloured red. Shares in the class “healthy” over 
80% are highlighted as green. For each testday the KetoMIR-1 index is calculated and 
displayed to our breeders, advisors and farmers. In the table “Overview of the control 
year”, the percentage class shares for the test year are shown and highlighted in colour 
according to the scheme described above. If you follow the link to the trial date, the 
KetoMIR classes are displayed in the traffic light system for each animal together with 
the milk recording results. 

The KetoMIR classification can be checked against diagnoses, observation, calving, 
occupancy, the milk recording results, etc. via the link with the animals to the event 
list. In the table “Overview of the control day” you can find the known KetoMIR herd 
proportions with a traffic light. After more than 4 years of routine use, LKV B.W. the 
following conclusion can be drawn. KetoMIR was well received by the companies and 
consultants, late or missing results are usually asked for immediately. KetoMIR is used 
by the feeding consultants to assess and adjust the feeding situation. However, KetoMIR 
does not replace the veterinarian and the direct employment of the farmer with the 
individual animal and the herd. There was developed at LKV B.W. an additional milk 
recording report called E-MIR that focuses on the presentation of the energy balance 
in the herd. E-MIR integrates several MIR parameters: Energy balance EB-NEL (GfE, 
2001) from the cooperation of DLQ, optiKUH and LKV B.W., the fatty acids from the 
EMR/OptiMIR-RobustMilk cooperation grouped into De-Novo and Preformed (FA), the 
energy detect classification (ED), developed by CLASEL as part of the OptiMIR project, 
as well as the KetoMIR classes and probability values. The KetoMIR-2 predictions are 
currently evaluated and fine-tuned. 

The report is created in two editions, an edition for the farmer with initially less 
information, limited to EB-NEL and KetoMIR-1 class, as well as an extended version 
for LKV advisors and consultants with additional EB-NEL, KetoMIR-1and KetoMIR-2, 
FA and ED. The farmer receives an animal list with milk recording results supplemented 
by the energy balance NEL and the KetoMIR-1 classes, sorted in ascending order 
according to lactation days. Cows are grouped according to lactation period as cow 
status (primipar F and multipar K). For the KetoMIR classes, the percentage group 
shares are shown again and highlighted in colour according to the traffic light system. 
The energy balance is shown against the number of lactation days using a point graphic 
with a distinction between primipar and multipar. The points within the first 120 days 
are also stored with the KetoMIR traffic light colour. 

To make it easier to classify the farm, population means are grouped according to 
breed, lactation week, cow status, probationary period and probation month and 
based on this, a green estimation curve is calculated and integrated into the graph 
with green colour, separated according to primipar and multipar. It can be clearly seen 
the typical course from negative EB values at the beginning of lactation to positive 
values in the middle and before the dry cattle phase. The advisor’s list of animals 
also contains the percentage of the de-novo and preformed fatty acid groups. The De 
Novo group is calculated as the sum of short-chain and medium-chain fatty acids, C6 
- C14. The preformed group is formed as the sum of the long-chain fatty acids, C17 
+ C18. In addition, the ED class is output as the energy balance parameter, which is 
a classification algorithm which marks animals with an extreme undersupply (-) and 
oversupply (+) relative to the farm average at herd level. 

For the KetoMIR values, the KetoMIR-2 classification is also output as well as the 
respective KetoMIR probabilities as a value between 0 and 1 in order to be able to better 
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recognize class crossers. The E-MIR table with herd averages for the LKV advisors 
has been expanded to include mean values for fatty acid groups and KetoMIR-2 class 
proportions. The graphics in the LKV consultant view have been expanded to include 
a separate representation of the fatty acid groups De-Novo and Preformed, based on 
the principle of the EB graphics. At the beginning of lactation, long-chain fatty acids 
from body fat mobilization dominate, the proportion from neogenesis is reduced. In the 
middle of lactation, things turn around. Towards the end of lactation, the preformed 
proportions increase slightly due to the reduced feeding and the neogenesis proportions 
slightly decrease.

Planning for 2021 foresees a strong expansion of the range at LKV B.W. in the area 
of MIR parameters. MIR technology continues to be viewed as a key technology. The 
information base is continually being expanded to further optimize herd management, 
notably through new reports such as Energy-MIR (E-MIR) and udder health-MIR 
(MastiMIR). It is also planned to integrate other MIR parameters in the herd manager, for 
example energy balance, fatty acids, ketone bodies, methane, MastiMIR, etc. Regarding 
the E-MIR report, an evaluation by LKV consultants and continuous correction has 
started in 2020. The following questions must be answered: Do the results correspond 
to the situation found? What is the influence of the composition of the food (eg fatty 
acid additives, protected fatty acids)? Should the presentation and limit values be 
optimized? Can KetoMIR-1 be replaced with KetoMIR-2? In addition, interpretation and 
action instructions should be developed for optimal use of the E‑MIR. The usability of 
KetoMIR’s results in breeding will also be explored in more detail. 

KetoMIR2 has been developed in the international big data project D4Dairy – P2.2 
Disease Detection with Milk Spectral Data (https://d4dairy.com/en, 2018 - 2022). Within 
this project the model will be further evaluated and optimized for use in routine herd 
management and breeding. 

The EE, FE and EB NEL and ME work was part of the collaborative project optiKuh, 
funded by the German Federal Ministry of Food and Agriculture. 10 years (2011-2021) 
of spectral standardization. This work was concepted by CRA-W, founded by OptiMIR 
project with the support of INTEREG IV B and it is under enhancement and continuous 
development of EMR-EEIG.
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The aim of this study was to develop a new protocol for recording real data on individual 
mozzarella yield to be included in breeding programs to increase mozzarella production 
in the buffalo population. Almost all the milk from the Italian Mediterranean buffalo is 
transformed into mozzarella cheese. Therefore, increasing yield in mozzarella cheese 
is the main goal of the breeding programs. Traditionally, yield in mozzarella cheese is 
estimated using milk, fat and protein by the well-known PKM formula. However, the 
yield in mozzarella not only depends on protein in the milk, but also on the type and 
on the proportion of the different protein variants. Moreover, the PKM is highly related 
to milk production. Therefore, selecting for the PKM might increase in the population 
the number of buffalo that produce more milk, and not necessarily more mozzarella 
cheese. The most accurate, and not expensive trait to be recorded for estimating the 
individual cheese yield is the Dry Matter Yield in Curd (DMYC). A total of 499 milk 
samples of 1 kg from 89 buffalo distributed in 8 farms from 2010 to 2015, were collected 
3 to 6 times per lactation, at intervals of 40-45 days from DIM 30 to 270. 

To obtain DMYC from each milk sample, the Real Yield in Curd (RYC) was first 
calculated with the micro-cheese technique according to the following protocol: 1 
kg of milk sample was heated to 37 °C after adding 1 ml Kg-1 of liquid rennet, with a 
concentration of 160 IMCU mL-1. The obtained curd was put in a plastic tray container, 
refrigerated at 4°C and weighted after 24 hours to getting the RYC after 24 hours 
(RYC24). From the RYC24, 50 g of curd were used to determine the percentage of 
dry matter in the curd by drying the RYC24 at 103°C. DMYC was then obtained by 
multiplying the weight of the curd from 1 kg of milk sample by the DM (%). 

To evaluate the effectiveness of using the DMYC as estimator of individual RYC, 
correlation analysis of DMYC with the RYC24, PKM and APKM was performed. In 
addition, correlations of the average DMYC overall DIM intervals and DMYC for each 
DIM interval were evaluated to detect the possibility of using only one sample from a 
DIM interval per lactation. DMYC resulted largely correlated to RYC24; while it was 
lower correlated to PKM and APKM. Thus, DMYC might be used as estimator of the 
individual RYC. Moreover, DMYC estimated at DIM interval of 181-210 was highly 
correlated to DMYC overall DIM intervals. 

Thus, collecting only one milk sample at DIM interval 181-210, might allow to estimate 
accurately the individual DMYC in the whole lactation. DMYC at DIM 180-210 is a 
novel, simple and not expenses trait to be recorded for the genetic selection of buffalo 
to increasing in the population the number of high yielding buffalo that will produce 
more mozzarella cheese than more milk.

Keywords: Buffalo mozzarella cheese, yield in curd. 
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The increasing economic relevance of the Italian buffalo breed is due to the high market 
demand for the buffalo mozzarella cheese, resulting in a price for buffalo’s milk that is 
more than three times higher than the price of cow’s milk. The higher price, however, 
does not depend only on the higher yield of buffalo milk but also on the better flavour 
and, therefore, on the greater satisfaction of the consumer for the better tasty of the 
product. Due to its high dry matter content, buffalo milk is very suitable for processing, 
with a yield in cheese higher than that of cow’s milk (Zicarelli, L., 2004). To produce 
1 kg of mozzarella cheese are required 8 kg of cow’s milk, but only 4 kg of buffalo’s 
milk (Zicarelli, L., 2004). Therefore, in Italy, buffalo milk is primarily paid by its yield 
in mozzarella cheese and by its unique flavour. Moreover, the breeding schemes are 
aimed to achieve genetic improvement of yield in mozzarella cheese. Traditionally, 
the production of mozzarella cheese (PKM, kg) is estimated from the observation of 
milk, fats and proteins, from the formula of Altiero et al. (1989) (Rosati A. and D.L. 
Van Vleck, 2002). 

This formula takes into account the amount of milk production and the percentage 
of protein and fat. However, the yield of mozzarella cheese does not only depend 
on the percentage of protein in the milk, but also on the type and on the proportion 
of the different protein variants (Zicarelli L. et al., 2020). However, selection of the 
percentage of proteins in the milk does not guarantee the selection for a higher yield 
in mozzarella cheese. 

Therefore, by selecting through the PKM, one risk is to increase the number of animals 
that will produce more milk, and not more mozzarella cheese. In a recent work, Parlato 
E., and Zicarelli L. (2015) proposed an adjusted PKM (APKM), obtained by multiplying 
the PKM by the ratio of its estimated yield and the mean estimated yield of the year 
that the lactation refers to. The APKM is lower correlated to the milk yield than the 
PKM and tended to increase ranking of the sire with positive EBVs for protein and fat 
percentage (Parlato E., and Zicarelli L., 2015). 

The objective of this study was to set up a new protocol to recording individual yield in 
curd in the buffalo population to be used in selection program for increasing the number 
of high-yielding buffalo that will produce more mozzarella cheese than more milk.

A total of 499 milk samples of 1 kg, from 89 buffalo distributed in 8 Italian farms, from 
year 2005 to year 2010, were collected. Buffalo were fed on a diet with the same 
chemical composition (15,5% of CP, 0,9 MFU/kg of DM., 130g of Ca; 76 g of P, >32% 
Fiber/ kg of DM., <240 gr / kg of DM). Milk samples were collected from 3 to 6 times 
during a single lactation, at intervals of about 40- 45 days from 30 to 270 days in milk 
(DIM). The day of calving was set equal to 0. From the same samples an addition of 
500 ml of milk was collected for the analysis of Percentage of Crude Protein (PP) and 
Percentage of Fat (FP) by CombiFoss™ 7 using the dilution method.
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To obtain the Dry Matter Yield in Curd (DMYC) from each milk sample, the Real Yield 
in Curd (RYC) was first calculated by the micro-cheese making technique according 
to the following protocol (Zicarelli et al., 2001; Zicarelli et al. 2020): Liquid rennet 
(80% Chymosin) with a concentration of 160 IMCU mL-1 (International Milk-Clotting 
Units, mL-1) was added to the milk sample (1 mL Kg 1) and heated to 37 °C. Since 
coagulation was performed with the maximum amount of rennet, the curdling and the 
curd formation were faster than that observed in the cheese factories. To facilitate 
the complete syneresis, the coagulum was cut first into a large piece then into small 
pieces, and then pressed to remove the residual whey. The curd was put in plastic 
tray containers, refrigerated (4°C) and weighted after 24 hours. The measured weight 
represented the yield of the curd per kg of milk after 24 hours (RYC24). After 24 hours 
at 4°C, 50 g of curd were used to determine the percentage of dry matter by drying the 
yield in curd at 103°C; Dry Matter Yield in Curd (DMYC) was obtained by multiplying 
the weight of the coagulum from 1 kg of milk sample by the DM.

DMYC= RYC24 * DM*0.01

PKM and adjusted PKM (APKM) were calculated for each individual milk sample by 
the following formula (Parlato E. and L. Zicarelli, 2015).

APKM=milk yield, kg * [3.5*(PP)+1.23*(FP)-0.88] / 100

where: C = EY / MEY; EY = [3.5*(PP)+1.23*(FP)-0.88] and MEY is the average milk 
yield of the year the lactation refers to.

To evaluate the effectiveness of using the DMYC as estimator of the individual RYC, 
correlation analysis among DMYC, RYC24, PKM, and APKM was performed by PROC 
CORR procedure of SAS (2005). Moreover, to detect the possibility of using only one 
sample per animal, as representative of the whole lactation, correlation analysis of the 
average DMYC per lactation with the DMYC per each DIM interval was also evaluated.

Means and standard deviations of DMYC, RYC24, PKM and APKM are shown in 
Table 1. DMYC (113.75 g) showed the smaller mean weight compared to RYC24 
(260.19 g), PKM (263.98 g), and APKM (264.33 g). The coefficients of correlation 
for DMYC, RYC24, PKM, and APKM are shown in Table 2. Correlation coefficients 
ranged between 0.52 (PKM vs DMYC) and 0.90 (PKM vs APKM). All the correlations 
were highly statistically significant. PKM vs APKM showed a large correlation because 
APKM is derived from the PKM. Also, DMYC vs RYC24 had a large correlation because 
DMYC is derived from the RYC24. Whereas correlations of PKM and APKM with RYC24 
and DMYC were low. These results showed that PKM and APKM might not be good 
estimators of the RYC24 and consequently of the DMYC. The weight of the dry matter 
(DMYC) of the coagulum would give results more accurate than the RYC24, avoiding 
any bias due to the process by which the RYC24 is obtained.

Coefficient of correlations of the overall average DMYC per lactation, and the DMYC 
at each DIM intervals, are shown in Table 3. Correlations were all highly statistically 
significant. The larger (0.79) correlation was found at the DIM interval of 181-210 days. 
At this stage of the lactation, buffalo have reached the energetic balance, therefore, 
they can express completely their mammary synthesis capability. Whereas, the smaller 
(0.59) correlation was found at the DIM interval of 151-180 days. Since there was a 
large correlation between the overall average DMYC and the DMYC at DIM interval 
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of 181-210 days, DMYC might be evaluated per animal, per lactation, only one time 
at DIM interval of 181-210 days.

DMYC at DIM 180-210 is a novel, simple and not expenses trait to be recorded for the 
genetic selection of buffalo to increasing in the population the number of high yielding 
buffalo that will produce more mozzarella cheese than more milk. Moreover, selection 
for DMYC will help to keep the characteristic flavour of the buffalo milk. Animals with 
larger yield in mozzarella cheese but less milk production are desirable to avoid flavour 
dilution in the milk (Zicarelli, 2020). Yield in mozzarella cheese and flavour are the 
most important traits for improving the profit of the buffalo farm. 

Conclusion

Table 1. Overall unadjusted means and standard deviations of weights for Real 
Yield in Curd after 24 hours (RYC24), PKM; adjusted PKM (APKM) and Dry Matter 
Yield in Curd (DMYC), in grams, of 499 individual milk samples at different DIM of 
89 animals. 
 

Trait Mean Std.Dv 
DMYC 113.75 14.85 
RYC24 260.19 29.32 
PKM 263.98 22.15 
APKM 264.33 32.33 

 
 
Table 2. Coefficients of correlation* (above and below the diagonal) among DMYC, 
RYC24, PKM and APKM. 
 

 DMYC RYC24 PKM APKM 
DMYC 1.00 0.85 0.52 0.65 
RYC24 0.85 1.00 0.56 0.58 
PKM 0.52 0.59 1.00 0.90 
APKM 0.65 0.56 0.90 1.00 

* : P≤ 0.0001 
 
 
Table 3. Coefficients of correlation, r* for the unadjusted mean of DMYC overall 
DIM intervals and DMYC at each DIM interval of 89 buffalo. 
 

DIM r 
30 -60 0.71 
61-90 0.68 
91-120 0.70 
121-150 0.65 
151-180 0.59 
181-210 0.79 
211-270 0.72 

*: P≤ 0.0001 
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The breeding of the Mediteranean buffalo is a long-standing Italian tradition, being 
internationally recognized thanks to its iconic  Mozzarella di Bufala Campana, a 
Protected Designation of Origin (PDO) certified mozzarella cheese. Over a population 
of more than 419.000 extant animals,  the Italian National Association of Buffalo 
Breeders (ANASB) involved 121.403 animals from 380 farms mainly widespread in 
central and southern areas of the country. In 2019, official milk recording by certified 
recorders belonging to the Associazione Italiana Allevatori (AIA) and following the 
ICAR guidelines included 49.932 buffalo cows in 215 herds. In 1997 a first selection 
scheme was implemented. It was based on a traditional progeny testing and a BLUP 
genetic evaluation of milk productive traits. A first selection index, namely the PKM, 
was also developed. The breeding objective of the PKM was the mozzarella cheese 
yield using as selection criteria milk yield, fat and protein. Although a positive selection 
on milk yields was observed from 1.608 Kg in 1977 to 2.169 Kg in 2018, PKM had an 
unfavorable effect on the genetic trend for fat and protein.

In order to recover the unfavorable trend of milk components as well as to include 
morphology, a new selection index named IBMI has been developed and applied since 
2019. The IBMI breeding objectives are milk production and mozzarella yield. IBMI 
includes five selection criteria:  feet and legs, udder morphology, milk kilograms, fat 
and protein percentage whose relative emphasis was 24, 20, 21, 15 e 20, respectively. 
The expected genetic progress by generation using IBMI is +58 Kg for milk, +0.10 
and 0.05 % respectively for fat and protein percentage. The next steps in the selective 
activity will be: a) the development of a test day model for productive traits and b) the 
implementation of a single step genomic EBV evaluation.

Keywords: Buffalo, genetic response, selection index.

The Water Buffalo (Bubalus bubalis) is a large bovid mainly distributed in the Asian 
continent where the 97% of its world population is concentrated (FAO, 2020). The 
name ‘water buffalo’ is due to its adaptation to flooded or swampy areas, where it 
partially submerges and walks on the bottom mud without difficulty. The Mediterranean 
area, where the rest of the world population is raised (3%), historically have been 
characterized by these optimal rearing conditions. In the European continent can 
be found only the 0.2% of its world population and about 93% of these animals can 
be found in south-central Italy (Neglia et al, 2020). Total census in Italy increased 

Abstract

Introduction
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considerably, making it one of the most important dairy species in the country. In 2019, 
34,990 lactating buffaloes have been registered to the herd book. Moreover, 666,960 
controlled lactations and 9,953 type traits evaluations are available and officially 
recorded (ANASB, 2020). Thanks to the physical-chemical properties of its milk - high 
concentration in protein and fat (FC ~ 8 %) and favorable coagulation (Costa et al, 
2020) the main zootechnical interest of the Italian Mediterranean Buffalo (IMB) is to 
produce iconic traditional dairy products like the Mozzarella di Bufala Campana (Boselli 
et al, 2020), that has a great economic impact on the Italian food industry (ISMEA, 
2020). Costa et al. (2020a, 2020b) refers to the impressive increase in heads that the 
IMB has experienced in the last 15 years, with an increase in terms of kilos of cheese 
produced, a larger herd size, a constant increase in registered herds, as well as the 
rise in milk price. Therefore, the economic interest in this specie makes it necessary 
to develop new innovative tool to improve breeding process. In 1997 a first national 
selection scheme was implemented. It was based on a traditional progeny testing and 
a BLUP genetic evaluation of milk productive traits. A first selection index, namely the 
PKM, was also developed. The breeding objective of the PKM was the mozzarella 
cheese yield using as selection criteria milk yield, fat and protein (Rosati and van Vleck, 
2002). Although a positive selection on milk yields was observed– from 1.608 Kg in 
1977 to 2.169 Kg in 2018, PKM had an unfavorable effect on the genetic trend for fat 
and protein. Moreover, no emphasis was given to health related or functional traits. 
An effective breeding objective should be defined for the genetic improvement of any 
population such that the future individuals, e.g., buffalo cows, will produce the desired 
products more efficiently under expected future economic production environment 
(Lopez-Villalobos and Garrick, 2005). Attending to mozzarella cheese manufacturers 
and farmers community, who both asked for a more balanced breeding objective 
which included also health related traits, annual genetic response for milk yield (MY), 
milk components (MC), composite feet and legs (FL) and mammary system (MS) and 
their correlated response with mozzarella cheese production were estimated in the 
IMB using selection index theory to eventually develop a new and more up-to-date 
aggregate selection index.

Different selection indices (I) and breeding objectives (H) were constructed using 
selection index theory (Hazel,1943). 

The selection indices investigated in this study considered the following traits: MY, fat 
content (F%), protein content (P%), mozzarella cheese production (MCY) estimated 
as 116.615 + 2.015 * (P% * F%) + 2.929 x (P%)2, and two composite traits FL and MS. 
The indices were of the form

I=b1 x1+b2x2+....+ bm xm = b’x

where xi is an observation on the ith trait and bi is the selection index coefficient (or 
weight) for that trait. In vector notation,  b’ = [b1, b2, ... , bm ] and x’ = [x1, x2, …, xm].

Three alternative breeding objectives were formulated according to relative weights 
given to MY, MCY, FL and MS. The different breeding objectives and relative weights 
considered in this work are shown in Table 1

The three scenarios were formulated in order to give an increasing relative emphasis 
on milk yield, but keeping the emphasis to MCY above 30%. The breeding objectives 
were of the form 

H = w1 g1 + w2 g1 + ... + wm g1 = w’ g

where gi is the additive genetic value of the ith trait and xi is the relative economic 
emphasis of the trait. In vector notation, w’=[w1, w2, ... ,wm] and g’=[g1, g1, ... ,gm]. The 
vector b was derived from the equation b = P-1Ga

Material and 
methods
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where P is the n x n phenotypic variance–covariance matrix of the traits (n) used as 
selection index, and G is the n x m genetic covariance matrix between traits in selection 
index (n) and traits in the aggregate genotype (m).

Matrices P and G were estimated using data from 7199 buffalo cows and a pedigree 
including 19574 buffalos. A multi-trait animal model was fitted using a Bayesian 
implementation via Gibbs sampling.

Genetic response (GR) to selection for each trait considered in the selection indices 
was calculated with a deterministic procedure (Cameron, 1997) applying the equation

where GRj is the GR for trait j and Gj is the jth column of matrix G.

The genetic correlation among the breeding goals and the selection criteria used to 
estimate the response to selection for the three different breeding scenarios are in 
Table 2

Mozzarella cheese production had an unfavourable genetic correlation with MY (‑ 0.54), 
a null correlation with MS (-0.01), and a favourable correlation with FL (0.25), F% (0.87) 
and P% (0.96). correlation. Those values had an impact on the selection response for 
all traits considered in the three scenarios which are shown in Table 3.

The breeding objective S1 showed large and positive genetic response in terms of 
mozzarella cheese production, fat and protein %. However, MY was strongly penalized, 
with a negative genetic response. The breeding objective S2 had the best results for 
health related traits, namely feet and legs and mammary system. In this scenario, 
35% of the relative emphasis in the breeding objective was given to health related 
traits. The last scenario - S3 - showed the best overall results with a positive genetic 
response for all traits included in the breeding objective ranging from 0.02 (MYC) to 
0.21 (P%). The scenario S3 was eventually chosen as the official new selection index 
for the IMB, called IBMI.

Selection index combines different sources of information that can be used to predict 
an animals’ breeding value. It combines this information by weighting it with its relative 
importance based on the relationship with the breeding goal. In the IMB the breeding 
goals were identified as: Cheese Production, Milk Yield and Longevity. The need 
for a change was mainly based on a frankly discussion among ANASB technicians, 
farmers and cheese makers. The observed negative genetic trend for fat and protein 
content suggested the need for a substantial change. From one side there was the 
need to keep increasing the kg of milk but at the same time there was the urgency of 
recovering the fat and protein content negative genetic trend. Moreover, the farmers 
asked for including some linear traits, especially the ones related to longevity and health 
(e.g., udder and feet and legs). Indeed, the new breeding goal gives more emphasis 
to the cheese production and at the same time increases milk yield, looking for the 
first time at the functional morphology. 
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The new selection index for the Italian Mediterranean buffalo (IBMI) is extremely 
different from the former selection index (PKM). Introducing it as a new selection tool 
has actually been a cornerstone of buffalo breeding in Italy, affecting bulls and dam 
rankings. Indeed, the best individuals are no longer those with the highest milk EBV, 
but those that best match the need for a more balanced breeding objective (production, 
quality and functionality). Moreover, changing the breeder’s attitude to look at only one 
trait, milk production, is not as easy as pie. It takes time and needs the right piece of 
information.

The IBMI is the very first attempt to use selection index theory to set up an aggregate 
index in the Italian Mediterranean buffalo. However, it can be adjusted especially as 
concerns the phenotypes used to improve the quality of milk for mozzarella cheese 
production. In the present research, fat and protein percentage were used as proxies of 
milk quality but several studies have already showed that milk coagulation properties like 
rennet coagulation time or curd firmness 30 min after coagulant addition are important 
traits for enhancing the efficiency of the dairy industry. 

Those new phenotypes coupled with the use of genomic selection are the on-going 
and very next ANASB breeding objectives.

Conclusions

Table 1. Relative emphasis (%) on traits included in alternative breeding scenario for 
the IMB. 
 

Breeding scenario 
Traits in breeding objectives 

MY MCY FL MS 
S1 5 45 30 20 
S2 30 35 15 20 
S3 45 45 5 5 
 
 
Table 2. Estimates of genetic correlations among the breeding goals and the selection 
criteria in the IMB. 
 

Traits FLa MSa MYa F% P% MCYa 

FL 1.00 0.19 0.00 0.15 0.28 0.25 
MS 0.19 1.00 0.29 - 0.08 0.03 -0.01 
MY 0.00 0.29 1.00 -0.55 -0.47 -0.54 
F% 0.15 -0.08 -0.55 1.00 0.69 0.87 
P% 0.28 0.03 -0.47 0.69 1.00 0.96 
MCY 0.25 -0.01 -0.54 0.87 0.96 1.00 
a Traits in the breeding objectives. 
 
 
Table 3. Genetic response (expressed in genetic standard deviations) for the three 
breeding objective. 
 

Breeding scenarioa 

Traitsb   
MY MYC P% F% FL MS 

S1 -0.24 0.05 0.42 0.32 0.14 0.13 
S2 0.03 0.03 0.25 0.15 0.16 0.22 
S3 0.11 0.02 0.21 0.12 0.14 0.20 
a relative weight given to MY, cheese production, FL and MS: 5:45:30:20 (S1), 
30:35:15:20 (S2) and 45:45:5:5 (S3)  
b MY = Milk yield (kg/270d), MYC = mozzarella cheese production (MCY) estimated 
as 116.615 + 2.015 * (P% * F%) + 2.929 x (P%)2, P% = protein %, F% = fat 5,  
FL = composite feet and legs, MS = composite Mammary System 
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The Council on Dairy Cattle Breeding (CDCB) is a non-profit collaboration between 
four sectors of the U.S. dairy industry: dairy records providers, dairy records processing 
centers, Purebred Dairy Cattle Association (PDCA) and National Association of Animal 
Breeders (NAAB). The purpose of CDCB is to host the national cooperator database 
(NCD) on behalf of the dairy community and use data analytics to provide value back 
to dairy producers through genetic evaluations and management information. The NCD 
is composed of three basic data types: animal relationships (pedigrees), management 
and performance records (phenotypes) and single nucleotide polymorphisms (SNP) 
markers (genotypes). 

Phenotypes and pedigrees have been collected over a century by dairy herd 
improvement (DHI) services contracted by dairy producers to enhance decision-making 
process at the herd. Dairy producers own and control the use of data generated from 
their herds, and access to data is regulated by agreements signed with the DHI service 
providers. Genomic nominators provide tissue sampling and data collection services 
and serve as conduits between farmers, genotyping laboratories and CDCB for genomic 
predictions. Control over the use of genomic data is also exerted by animal owners and 
regulated by commercial agreements between service providers and users. The NCD 
receives data from a multitude of sources, and CDCB has material license agreements 
with each one establishing data access and use limits. A material transfer research 
data exchange agreement between the Agricultural Research Service (ARS) of U.S. 
Department of Agriculture (USDA) and CDCB allows ARS researchers access to the 
NCD for research purposes only. Other research organizations can only access data 
from the NCD if formally authorized by the data controllers. International data sharing 
initiatives mainly involve genotypes and are negotiated by data controllers and executed 
by CDCB accordingly. 

CDCB is also investing in novel phenotypes data generation projects such as feed 
efficiency, which require a new business model to secure sustainable data flow. 
Dairy herds data from sensors is growing rapidly in the industry but in a disordered 
process that lacks standards, quality assurance, and means to be properly integrated 
to the existing data systems. Dairy herd data belong to dairy producers who invest 
in technology and pay for all services. Therefore, dairy data must serve primarily to 
improve the decision-making process at the herd level and the role of farmer-based 
organizations such as CDCB is to facilitate an effective integration of the existing and 
emerging data streams.

Keywords: Data stewardship, CDCB, U.S. dairy.
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Data ownership has become a common discussion in the dairy industry since dairy 
herds started the transition from small-medium technology-empirical management to 
larger-hi-tech-professional management kind of operations. Nowadays most herds need 
to be managed as an enterprise that optimizes economic outputs by controlling costs 
and using the right technologies. This optimal management can only be achieved by 
using reliable data to monitor all aspects of the operation and therefore have a sound 
decision making process in place. The sector has accompanied the trends of precision 
agriculture and an abundance of new technologies to generate data at the farm have 
been incorporated into the system. 

Besides the traditional milk recording data collected periodically (milk yield, components, 
somatic cell counts, reproductive events, culling and dry off events), now on farm 
sensors generate data 24 hours a day, a large proportion of calves are genotyped right 
after birth and genomic predictions are used as management tools, and a myriad of 
other service providers offer specialized data to be added to the farm hard disks (vets, 
nutritionists, artificial insemination planners, feedstuff suppliers, crop specialists, milk 
buyers, etc.). One can easily assume that dairy farmers are overwhelmed with data 
and integration of all these pieces of information is still far from adequate. The question 
to be addressed here is who owns these data, who has access to it and what can be 
done with it. This paper will focus on the specific situation of the U.S. dairy industry and 
how data ownership, privacy, use, sharing and stewardship are currently managed.

Dairy data in the U.S. has a long history and usually it is traced back to 1908, when the 
dairy herd improvement associations (DHIA) started collecting regular milk recording 
data. From the start, the U.S. Department of Agriculture (USDA) provided logistic 
support and research that evolved into the modern services supporting decision making 
and genetic evaluations. For most of this history, the Agricultural Research Service 
(ARS) maintained the dairy national cooperator database (NCD) and provided genetic 
evaluation services. In 1999 the CDCB was formed as a nonprofit corporation with the 
purposes of providing a forum in which to share information and coordinate activities 
that improve dairy cattle genetics and maintaining the integrity of data used in the 
genetic evaluation of dairy cattle. CDCB served as a communication channel between 
ARS, the dairy data providers and the organizations using and promoting U.S. dairy 
genetics. The three sectors represented in the CDCB board were the DHIA sector, 
the breed associations and the artificial insemination (AI) industry. 

When the genomics era initiated in 2008, demand for data management and genetic 
evaluation services increased dramatically and both ARS and the dairy industry 
stakeholders realized that a new business model was necessary to fulfil the industry 
needs and continue at the edge of the scientific knowledge. A significant part of the 
research that allowed the genomic technologies to be adopted in dairy cattle was 
carried out by ARS researchers using data from the NCD. It became evident that it was 
time for the industry to take responsibility over the services and allow ARS to focus 
on the research. As a consequence, the NCD stewardship and the genetic evaluation 
services started to migrate from ARS to CDCB in 2013 and the process was completed 
in December 2015. 

A material transfer research data exchange agreement between the two organizations 
establishes that ARS continues to have full access to the NCD for research purposes 
only and CDCB, besides receiving ARS legacy programs and expertise, continues to 
receive scientific support from ARS researchers and is committed to maintain quality 
certification programs to ensure the NCD data quality. 

Introduction

Dairy data in the U.S.
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Figure 1 - Number of organizations providing data to the National Cooperator Database 
hosted by the Council on Dairy Cattle Breeding (April 2021).

Dairy data 
management

Data ownership, 
access and use

Figure 1 shows the number of organizations providing data to the NCD. Data types 
flowing into the NCD can be described as animal identification, genealogy, performance, 
management, health, conformation appraisals, dry matter intake, breeding values 
and genomic markers. Quality certification for animal identification, performance, 
health and management data is provided by Quality Certification Services (QCS), for 
international genealogy and breeding values by the Interbull Centre and for genomic 
and genealogy data by CDCB. Quality control for novel data types (e.g., dry matter 
intake) is overseen by CDCB. 

The CDCB members position is that dairy data belongs to the owner or controller of 
the animal from which data was generated. Dairy producers pay for all services and 
technologies that generate dairy data. All the other agents included in Figure 1 are 
either data processors, stewards or users. This is a fundamental principle irrespectively 
of the data type. As a consequence, only dairy producers or animal controllers can 
authorize access and use of data stored in the NCD. CDCB is the NCD steward and 
follows the access and use policies established by data providers. 

DHI data access and use is regulated by agreements between dairy producers with 
the DHI service providers. Genomic nominators provide tissue sampling and data 
collection services and serve as conduits between farmers, genotyping laboratories and 
CDCB for genomic predictions. Control over the use of genomic data is also exerted 
by animal owners and regulated by commercial agreements between service providers 
and users. Since the NCD receives data from a multitude of sources (Figure 1), CDCB 
has material license agreements with each data provider establishing data access 
and use limits. Research organizations can only access data from the NCD if formally 
authorized by the data controllers. International data sharing initiatives mainly involve 
genotypes and are negotiated by data controllers and executed by CDCB accordingly. 
CDCB is also investing in novel phenotypes data generation projects such as feed 
efficiency, which require a new business model to secure sustainable data flow. Dairy 
herds data from sensors is growing rapidly in the industry but in a disordered process 

 
 

Figure 1. Number of organizations providing data to the National Cooperator Database hosted by the Council on Dairy 
Cattle Breeding (April 2021). 
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that lacks standards, quality assurance, and means to be properly integrated to the 
existing data systems. 

Dairy herd data belong to dairy producers who invest in technology and pay for all 
services. Therefore, dairy data must serve primarily to improve the decision-making 
process at the herd level and the role of farmer-based organizations such as CDCB 
is to facilitate an effective integration of the existing and emerging data streams and 
follow the access and use options of dairy producers as the national data steward.

Take home 
message
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Dairy industries worldwide are facing many of the same challenges: fewer and larger 
dairy farms, more investment in on-farm technology and significant industry demand for 
the efficient collection, exchange and integration of this data. The on-farm technology 
choices traditionally available from a few brand name equipment manufacturers is now 
being crowded with a growing number of start up sensor and technology companies 
and increasing market penetration of herd management software companies. The 
ability to effectively move and manage data with a growing number of suppliers and 
lack of industry standardization has created an increasingly inefficient process. As well, 
equipment manufacturers are continually pressured to meet the data interface demands 
of multiple (national) organizations and this detracts from their primary objectives of 
developing innovative milking and herd management technologies.

To address this increasingly costly issue, seven farmer owned organizations have 
collaborated in the establishment of a unified international dairy data exchange network 
partnership (iDDEN GmbH). Together the organizations represent about 20 million dairy 
cows on 200,000 dairy farms in 13 countries on three continents. The objective of the 
partnership is a critical mass of organizations that will coordinate unified data exchange 
and integration with dairy equipment manufacturers and other entities involved in 
herd management. Given our intent to integrate ICAR-ADE (Animal Data Exchange) 
standards wherever possible, we have started work with three initial manufacturers 
given their intent to switch to the ADE standards. Once completed, we will continue with 
the addition of manufacturers and then expand the geographic service regions. The 
end goal is to provide global access for other organizations while retaining leadership 
by a farmer- led organization.

iDDEN purchased the former NCDX data exchange system used in the Nordic countries 
and is currently adding a connection to cloud-based data repositories. In principle the 
newer data exchange technologies (JSON-REST) using ICAR-ADE standards will 
be implemented where possible and available. The objective is to create a standard 
process for parties involved in data exchange being milk recording, genetic evaluation, 
or other groups.

As it relates to data governance, the data will be real-time transfer and no data would 
be stored or retained by iDDEN. As well, appropriate authentication will be required 
by the farm and the end user to ensure that only approved parties will have access 
to farm data – either direct or via cloud connections where available. Other than data 
transfer security, the data governance issues of privacy and ownership will remain the 
responsibility of the organizations and farms using the exchange service.

Abstract
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Figure 1. Potential of iDDEN.

Keywords: Dairy cattle data, data exchange, international cooperation, dairy cattle data.

iDDEN GmbH was founded in May 2020 and brought together a group of organizations 
interested in data exchange that were seeking the opportunity to do so with less effort 
and reduced cost due to standardization and reuse of existing solutions.

The founding members are listed in Table 1 below to show the worldwide collaboration. 
However, more than these founding members benefit from using the iDDEN system 
as a platform for data exchange, all strategic partners and other customers will also 
be able to exchange data more easily with more potential partners in future.

The number of farms, herds and cows managed by these founding members are shown 
in Figure 1 “Potential of iDDEN” below. These high numbers of potential resources for 
data exchange will drive a lot of momentum to manufacturers of milking equipment 
and other on-farm systems to take the opportunity to be involved in the iDDEN data 
exchange.

The vision of iDDEN is to be the worldwide accepted standard platform for data 
exchange of dairy related data. To achieve this, iDDEN acquired the NCDX system 
of the Nordic countries developed by Mtech, Finland. Based on this foundation iDDEN 
will evolve the capabilities of the system and implement the standards developed by 
the ICAR-ADE working group.

Table 1. Founding members of iDDEN GmbH. 
 
Shareholder Designated area responsibilities 
CRV Holding B.V. The Netherlands and Belgium 
DataGene Ltd. Australia 
Lactanet Canada Canada 
NDHIA Inc. USA 
NCDX ApS Denmark, Iceland, Finland, Norway, Sweden 
RDV GmbH Austria, Germany 
VIT w.V. Germany, Luxemburg 

 

 
 
Figure 1. Potential of iDDEN.  
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Figure 2. Schematic of data flow between on-farm data and other (central) data.

The future of data exchange between data integrators (like Milk Recording Organizations 
(MROs)), Original Equipment Manufacturers (OEMs), and other on-farm systems or 
service providers on behalf of farmers is shown in Figure 2. 

The design goals for the iDDEN system are as follows:

•	 Reuse as much as possible

	 By building the iDDEN system on the infrastructure of the already established NCDX 
system, it will utilize the well-tested and working functionality of the original NCDX 
system. 

	 Since all partners currently operate some kind of rights and mandates checking 
system, it was decided to use these services also in the iDDEN system for 
authentication and authorization purposes.

•	 Standardize as much as possible

	 The iDDEN system will work on well-established open standards like web services 
using the JSON/REST approach.

	 As messages it will use those defined by the ICAR-ADE working group. This is 
an open-source development for standardization of animal data. Therefore, it will 
be suitable for a wide range of partners and provide a stable set of messages for 
communication with all potential partners in the future.

•	 Integrate only once

	 Using a Hub architecture, all partners will only need to implement “one” interface 
communicating directly with the iDDEN system. All routing and transforming (if 
needed) will be handled inside the Hub. It will be possible to enhance the system 
ith local specialties, but these should be avoided wherever possible.

 
 
 
 

 
 
Figure 2. Schematic of data flow between on-farm data and other (central) data. 
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Within the iDDEN system there are four different roles defined for systems involved in 
data exchange. These roles are listed and described in Table 2 below.

All three external roles can act as active or passive partners in the data exchange via 
the iDDEN Hub. Active means that the partner is initiating the conversation against the 
Hub. It will either request data from another partner using a ‘GET’ request or it could 
also send data using a ‘POST’ request. From a client/server architectural point of view 
this will be the client part. The passive partner will listen for requests and either send 
the requested data or accept the data sent from the active partner and store it in their 
database system. This will be the server part in data exchange. 

By using the established authentication and authorization services from each partner 
providing data, the partners have to ensure the right of the requesting partner to access 
the data in question. Therefore, they need the consent of the farm to share the data 
with other partners.

Each partner system will be identified by an iDDEN-ID. These are assigned by iDDEN 
during the registration of each organization to the iDDEN program. Alongside with this 
iDDEN-ID also an iDDEN-API-Key will be provided. These credentials will be used 
to authenticate against the Hub system before it will forward the request to the target 
partner.

The same iDDEN-ID will be used to authenticate against any authentication service 
from any other data delivering partner. For obvious security reasons this login must 
be done outside the Hub before any communication via the Hub. The token delivered 
in this step could be used in a full session of data exchange with this partner over a 
serial of requests.

In the case of Farm Management Software (FMS), it will use the credentials of the farm 
where the software is running to authenticate against the data delivering service. This 
is because the same FMS system is running on several farm locations and therefore 
the partner providing data needs to know which instance is requesting data to ensure 
the confidentiality of the data.

To show the steps involved in data exchange via the iDDEN Hub two scenarios are 
shown below. The first one (Figure 3) is a ‘GET’ request from an FMS system to acquire 
data from an MRO for a specific farm.

The second example (Figure 4) shows how an MRO sends data to an OEM cloud via 
a ‘POST’ request.

 
Table 2. Roles defined in iDDEN. 
 
Role Description 
FMS Farm Management System - This can be any software running on the farm 

which is involved in data exchange. It could be a herd management software or 
a milking system (robot, parlour, etc.) system or any analytic software. 

Cloud Cloud provider – This is the central cloud system of software running on the 
farm. It gets some data directly from the FMS. 

Data Integrator Data Integrator – This is the role of the iDDEN participant parties. It can be an 
MRO (Milk Recording Organization) or any other data integration system. 

Hub The iDDEN system responsible for routing and transformation of data. 
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Figure 3. Get data from MRO to FMS.

Figure 4. Send data from MRO to OEM Cloud.

List of referencesICAR-ADE project on GitHub: https://github.com/adewg/ICAR

iDDEN Homepage: https://www.idden.org/

 

 
 

 
 
Figure 3. Get data from MRO to FMS. 
 

 

 
 

  
 
Figure 4. Send data from MRO to OEM Cloud. 
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Modern dairy farms in the US generate vast amounts of data, and with constantly 
emerging new technologies and implementations, the frequency, diversity, and sheer 
quantity of these data are increasing. While each source of data can be valuable on 
its own, the integration of data from different on-farm sources offers a worthwhile 
opportunity to add significant value to the processes of farm management and 
decision-making. While this diversity in data collection platforms can be beneficial 
to the farmer, and to the adoption of automation procedures in general, this diversity 
also complicates the integration of data from all of these different systems. There is 
currently no standardization of data organization from a single source (e.g., milking 
parlor data), meaning that successful integration of data at a large scale requires that 
each individual source x vendor combination has a unique standardization process 
to make the data interchangeable and generically available to analysis algorithms. 

As part of the University of Wisconsin Dairy Brain project, we are developing an 
Agricultural Data Hub (AgDH) to do just that. The AgDH is a system which obtains data 
from on-farm sources and implements a variety of parsing scripts, each one designed 
to handle the translation of data from one source x vendor combination into a source-
specific (but vendor-generic) format. This standardized data structure is then stored 
and organized in a way that reflects the relationships and interdependencies between 
different on-farm data sources, facilitating the integration of on-farm data sources, and 
making the data available for further analysis. 

The AgDH is being implemented using an extensible Apache Airflow system of 
Directed Acyclic Graphs defining a library of workflows or sequence of instructions 
that orchestrate container-based standardization algorithms and Structured Query 
Language based data storage along with a data-serving Application Programming 
Interface endpoint that makes it available to the analytical services further down the 
value chain.

Keywords: Dairy brain, agricultural data hub, data integration.
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Dairy farms are data rich but analysis poor because their data streams reside in 
isolated silos. Insights from data integrated deployed to dairy farms can make large 
strides in farm efficiency and profitability (Cabrera et al., 2020). Although there are 
some promising emerging technologies such as Connecterra (2019), JoinData (2020), 
Idden (2020), the University of Wisconsin-Madison Dairy Brain project (Ferris et al., 
2020), among others; the dairy production sector, in general, has been slow to adopt 
data integrative technologies. 

Analytical tools that utilize these integrated data can improve profitability, sustainability, 
and resilience of farms (Lovarelli et al., 2020). Analyses from integrated data can 
bring novel insights that are not realized when using only one source of data. These 
become increasingly important as we move up in the tools’ hierarchical level from 
simple descriptive dashboards to involved predictive simulations to highly sophisticated 
prescriptive models. Integrated data analysis, also, allows us to envision what would be 
the unintended consequences of a management change in one area of management 
to another distant management area, something that is not normally in the radar of 
the decision makers.

Therefore, as part of the Dairy Brain project, we are developing a framework to 
connect dairy farm data from various sources and make the data interchangeable 
and integratable in preparation for downstream analysis, the Agricultural Data Hub 
(AgDH; Ferris et al., 2020). 

The AgDH collects, cleans, and integrates dairy farm data into a centralized data hub, 
and makes them accessible to the Dairy Brain analytical modules. More specifically, it 
involves 5 critical steps: (1) Accessing, (2) Decoding, (3) Cleaning, (4) Homogenization, 
and (5) Integration (Figure 1).

In brief, data from different sources and of different types (e.g., feed, milk, and health) 
are collected on-site from standard outputs from different farm software packages 
and uploaded periodically into the AgDH using minimal software installation on a 
farm computer (1). Data are then parsed and loaded into a database in a relatively 
intact native format (2). Next, data are cleaned by verifying validity and duplication (3). 
Following, same data types from different software are transformed and homogenized 
to a common format (4). Homogeneous data are then integrated into a data warehouse 
(5) where they can be accessed via a secure and authenticated web Application 
Programming Interface (API). 

The most advanced software components could be cloud-based and offer access to 
data via API’s, but this is still rare in dairy production systems. More often, the data is 
collected by different systems produced by different companies, and is only available 
by accessing files stored on a local computer located at the farm. A client process 
installed in a computer at the farm detects new data files from the systems and triggers 
the transfer of those files via the internet into a centralized set of servers that host the 
reminder of the AgDH functionality. 

Introduction

The Dairy Brain 
Agricultural Data 
Hub (AgDH)

Accessing
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Figure 1. The Agricultural Data Hub (AgDH) framework to integrate dairy farm data.

Decoding

Cleaning

Accessible data are extracted from its raw source and transferred to a more readily 
available format for easier processing, i.e., ingested. On-farm data sources tend to 
vary greatly on their level of machine readability due to the fact that existing farm 
software can output data in many diverse formats depending on vendors, software, 
and farms, creating a large matrix of data readability type combinations that need to 
be handled by the ingestion process. Thus, unique routines need to be developed for 
each data source to handle its peculiarities, which is labor-intense and time consuming. 
These onerous tasks are alleviated by a modular framework with a flexible approach 
for parsing scripts that extract and ingest the data. Although there is still a need for 
custom language for each new software, our framework allows scripts to be combined 
to assemble a custom ingest pipeline for each farm.

Data used by the system have to meet certain quality standards. Quality ensures 
the integrity and tractability of the data. Integrity signifies the validity of the data. The 
first step to guarantee integrity is enforcing data type on the data input replacing data 
that do not conform with the predefined data type with a null value. Then, exception 
handling is used to harmonize different null representations that might exist in different 
systems. Then, a process checks validity of the values by, first, comparing the values 
against a list of valid entries and then, by applying logic filters such as hard boundary 
checks, reasonable physical bounds, or mathematical reasoning to identify inconsistent 
observations. Data deemed invalid are handled with care and transparency following 
a moldable logic decision tree to determine the level of invalidation (observation, row, 
or dataset) and documenting the process for human review.
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Tractability ensures that any data element and derivative data products can be traced 
back to its original source and recreated. This is accomplished by capturing every 
step detail in the data transformation pathway by following a data lineage or data 
provenance approach and recurring to the use of metadata documents that describe 
the original source and form of the data. The data lineage begins identifying the farm, 
the software details, and the format of the data source. Each iteration of the ingestion 
process receives a unique identifier, which is attached to each entry made or updated 
from that iteration together with any logs or messaging from the ingestion iteration. 
These allow to link each data element to a single instance configuration and therefore 
recall the full ingest process to its original source.

Data follows a horizontal integration that involves identifying and extracting data 
commonalities among different software that record the same type of data. Hence, it 
requires standardization of units, terminology, types of measures, intervals, and other 
relevant details among input data. This process stores and serves standardized data 
for each farm regardless of the farm specific data collection system. Homogenization 
is challenging and complex as dairy data is highly heterogeneous and is collected by 
a number of dissimilar systems.

Data from different sources are connected following a process of record linkage that 
involves developing a pipeline to map records from one data source with those from 
other sources. Since each record from each system does not usually have a global 
unique key that links the record to a single organism, data connection among systems 
is complex. Hence, connecting data relies on a combination of linking variables. 

With large differences by countries, regions, and even farms, dairy animals are issued 
a unique identifiable number. In some places, this number could comply with an official 
government issued number that could or could not be used by the software recording 
systems of the farm. Most normally, individual animal identifiers in a farm are multiple 
and likely inconsistently used among data collection systems. Therefore entity match 
is a critical step for data connections.

Another issue arises from the fact that data on dairy farms resides at different levels 
of aggregation. Dairy farms have data collected at the individual animal level such as 
daily milking, data at the group level such as pen feed consumption, and at the herd 
level such as milk bulk tank composition. Thus, data relationships need to be inferred 
using yet other data sources. For example, the details of a feeding event from the 
feeding recording software can be linked to a pen of animals from the event tracking 
software by using unique animal identifiers and pen allocation. This variation in data 
available forces aggregated analyses such as averages reducing the tractability of 
individual animal information and subsequent precision. 

We rely on a workflow automation system called Apache Airflow (Airflow, 2020), in 
which we define a library of workflows or sequence of instructions defined as Directed 
Acyclic Graphs (DAG) that orchestrate container-based standardization algorithms 
and Structured Query Language (SQL) based data storage. These DAGs are well 
suited for diverse data, as the ones encountered on dairy farms, as they can be 

Homogenization
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AgDH
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Performance records have always been the critical “raw material” for genetic 
improvement. This is even more the case in the genomics era, when genomic 
relationships enable leveraging of phenotypic data across large numbers of animals 
that may not be recorded at all. In extensive industries such as beef cattle and sheep, 
performance recording has traditionally been conducted by individual seedstock 
enterprises, with the volume and quality (in terms of trait coverage and identification 
of fixed effects) of data varying widely within (and between breeds).

Genomics enables leveraging of the recording effort, but if that effort is not rewarded, 
there is a risk that breeders will withdraw that effort, leading to decline in accuracy of 
breeding values. Addressing this coordination problem requires a mechanism(s) for 
cost-sharing, which needs to address diversity in quality of data (which is linked to 
contribution to accuracy) and cost of recording. In addition, recording effort may be 
augmented by government or industry contributions, particularly for hard-to-measure 
or “future” traits.

A simple model is presented that equitably and efficiently shares costs and rewards of 
recording across multiple players. The model accounts for diversity in recording cost 
and data quality, and provides a framework for optimising pooled investment in novel 
traits, or traits for which market signals are imperfect or absent.

Keywords: Genomic reference, recording, costs, coordination.

The reference population is the critical core or foundation for implementation of genomic 
selection (Goddard and Hayes, 2009). This can be considered as an extension of 
the fundamental requirement for performance records for genetic evaluation and 
subsequent selection, but with the added dimension that a genomic reference 
population can be leveraged to a greater extent than performance records can be 
under simple BLUP evaluation. 

By leverage, we mean the ability to use information contained in the reference in 
evaluation of other animals, in particular those without their own performance records. 
Within a single breeding unit or organisation such leveraging is effectively an extension 
of the standard principle of focussing recording effort in a nucleus, from which genetic 
improvement is disseminated throughout the tiers of multiplication and commercial 
production (Bichard, 1971). In such cases the transition from BLUP-based to genomic 
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evaluation may not necessitate any significant organisational or investment modification: 
relevant traits will be recorded in a small component of the overall population, and 
genotyping may be used primarily to achieve increases in accuracy of estimated 
breeding values and to extract more value from recording hard-to-measure traits.

In the situation typical of beef cattle and sheep breeding and production, and especially 
so in countries with larger populations of these species, where there are large numbers 
of breeding units and (typically) larger numbers of commercial production enterprises, 
this relative simplicity may not apply. Here, the recording efforts of what may be a small 
number of enterprises can be “harvested” by many others, both breeders (enterprises 
selling bulls or rams) and commercial producers. If this harvesting erodes competitive 
advantage for the enterprises that do record, incentive to continue recording will likely 
decline, leading to loss of accuracy in genomic prediction. Such harvesting is a form 
of “free-riding”, and the risk it poses suggests that some mechanism(s) for sharing the 
cost of the reference should be developed.

The simplest model of a reference population would be a single herd (or flock) where 
recording is practiced for the objective traits, and costs can be clearly defined, and 
some number of enterprises “draw on” the reference, by genotyping. Here, the accuracy 
generated and costs incurred would be simple to determine, and the costs could be 
shared simply by a levy on genotyping, equal to the reference cost divided by the known 
or estimated number of genotypes sampled outside the reference.

A more typical situation would be where a number of herds (flocks) collect performance 
data and genotypes, potentially including specific resource herds (flocks) – who could 
be termed contributors. Almost invariably, there would be variation in both the accuracy 
generated reflecting different combinations of traits recorded by different contributors 
and different costs, reflecting variation in herd (flock) size, business arrangements etc. 

The contributor herds (flocks) could include industry- or government-funded or assisted 
units, likely particularly for hard-to-measure traits. Costs for farmer-owned units may 
need to be estimated by survey, or in more sophisticated models by some form of 
tender system.

This variation in accuracy generated and cost incurred across some number of 
contributors makes no difference to how costs of the reference can be shared across 
genotyping activity, but adds a dimension of complexity in allocating any levy collected 
amongst those contributors to the reference.

In this situation, we have:

•	 A range of contributors, varying in the acuracy their records generate when 
genotyping is added, and the cost of the accuracy they contribute, and

•	 Some number of “drawers”, who will also vary in the accuracy they obtain via 
genotyping, but likely little or no variation in genotyping cost

For each agent (contributor or drawer) we can in principle estimate (ex ante) or 
determine (ex post) the combination accuracy obtained and cost incurred, and hence 
for each case, the return on investment, as accuracy/cost. This can form the basis 
of determining equitable levies (charged to drawers) and rebates (distributed to 
contributors).
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Equalising return 
on investment via 
levies and rebates

Challenges for 
implementation

Costs can be equitably shared across contributors and drawers provided the following 
are known:

•	 Cost of reference ie amount to be collected [costref]

•	 Accuracy of genomic breeding values for reference animals [accref]

•	 Accuracy of genomic breeding values for genotype-only animals [accgo]

•	 Costs of genotyping at each level (ie can be different) [costref & costgo]

•	 Expected numbers of animals genotyped in the two categories [nref & ngo]

The levy to be imposed on genotypes is calculated as:

	 Levy = [(accgo x costref) – (accref x costgo)] / [accref + ((ngo/nref) x accgo)]	 (1)

and the rebate applied to reference data contributions is calculated as:

	 Rebate = Levy x (ngo/nref) 						     (2)

The application of this simple approach can be illustrated with an example. This is 
based on beef cattle in Australia, and assuming three categories of contributors and 
one of drawers (Table 1). The 3 categories of contributors reflect “research-level” 
recording – which might involve some industry or government assistance to record a 
trait such as individual feed intake, farms where all traits that can be readily recorded 
are, and farms recording only minimal records (such as weaning weight).

The simple example shows how costs of the reference can be shared equitably, and 
that under realistic conditions, the required levy can be modest. This is desirable, as 
the core of the approach is to share the reference costs over large numbers of animals 
that are only genotyped, but in practice, that number cannot be known in advance. 
This points to challenges for practical implementation.

The first is the number of animals that will be genotyped can either be estimated 
allowing the levy to be estimated for an upcoming year or other time period, or observed 
over a period and the retrospective number used to calculate the levy. Either way, 
there is likely to be some error, generating some difference in return on investment 
for contributors and drawers, and/or potentially some loss (or benefit) for whatever 
organisation is managing the levy and rebating system.

The second challenge is that the calculations involved depend on a single basis for 
calculating accuracy. This implies that the individuals comprising contributors and 
drawers can agree on some common breeding objective – such that accuracy is the 

Table 1: A simple example of the cost-sharing approach 
 

Contributors  
Parameter A B C Drawers 
Number of animals 150 450 500 12,500 
Accuracy generated or obtained 0.55 0.38 0.20 0.25 
Cost of phenotyping $143 $55 $20  
Cost of genotyping $30 $30 $30 $30 
Levy    $3.36 
Rebate $99.60 $34.29 $28  
Final cost after levy and rebate $73.40 $42 $29.69 $33.36 
Return on investment* 0.75 0.75 0.75 0.75 

*: calculated as Accuracy x 100/final cost. 
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accuracy for the objective. This may not be readily achieved where individuals vary 
widely in their goals for the breed.

The third challenge is simply to establish some coordinating mechanism: some group 
or process that determines the levy and rebates, communicates those, and actually 
collects the levy and distributes the rebates. This might be a breed association, or in 
situations where there is industry and/or government involvement, a genetic evaluation 
unit or service. No matter the situation, communication must be clear and effective – 
the mechanism needs to be understood and accepted.

The fourth challenge is around inclusion of traits for which there is no current market 
value. An example is methane output – in some countries, absence of any market price 
means that consideration of inclusion of methane emission in the objective involves 
more uncertainty than inclusion of a trait like sale weight. This uncertainty, or more 
precisely the resulting under-investment in recording, may be alleviated by some form 
of industry and/or government investment. If this is quantified, the approach used 
here can be extended to include such traits, with their cost of recording adjusted to 
reflect the investment, but the decision on the economic weight to be applied to such 
traits must be made in such a way that it is accepted by the contributors and drawers.

Two final practical challenges for implementation can be identified. The first is that the 
value of performance records and genotypes collected on reference animals varies 
through time: basically, there are diminishing returns to additional records (Goddard 
and Hayes, 2009). Strictly, this should lead to rebates declining as more reference 
animals are recorded – this can be handled mathematically in real-time, but in practice, 
the rebating mechanism may need to be simplified such that the first n records receive 
rebate x, the next n records some fraction of x, the next n records some smaller 
fraction of x, and so on. This would require very clear communication. The second 
is that the mechanism requires that the coordinating group – for example, a breed 
association – acts as a bank, particularly in making payments to the contributors. It 
may be simpler to avoid such payments by adjusting all levies and rebates to only 
addressing the recording costs not considered as “normal costs of business” – for 
example, focussing on the recording of hard to measure traits, but this does not 
address variation in the level of recording of traits that can be normally done on farm 
without expensive equipment. It is hard to avoid concluding that all costs, and hence 
all contributors, need to be eligible for rebates.

 

The underlying message of this paper is that phenotyping, and the accuracy that it 
generates, is the fundamental resource of genomics (“phenotyping is king!”). Whereas 
in the BLUP era, the costs and benefits of phenotyping were largely respectively 
borne and captured by the invidual or business investing in the recording, with 
genomics recording generates a shared or public good (strictly, a club good). Such 
goods typically require some coordinating or governance mechanism, at least more 
than simply leaving decisions about investment in recording to the market (Ostrom, 
1990). Such mechanisms can be effective over long periods and across a wide 
range of shared and/or co-created resources (Ostrom, 1990), but require active 
engagement of the participants. For breed associations, or industry- or government-
supported organisations, this implies effective and ongoing communication – primarily 
around the breeding objective(s) and how recording generates accuracy, and 
around understanding the shared or common pool resource that is being managed. 
Organisations that cannot deliver this will almost inevitably suffer from sub-optimal 
investment in recording, and resulting loss of competitiveness.
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Data pervades the dairy farming industry. However, specific data streams are most 
often ad-hoc and poorly linked to each other and to decision making processes. Dairy 
farms have embraced large and diverse technological innovations such as sensors 
and robotic systems, and can now stream vast amounts of data, but they have not 
been able to integrate all these data effectively to improve whole-farm decision making. 
Consequently, the benefits of the new smart dairy are not being fully realized. In order 
to address this, it is imperative to develop a system that can collect, integrate, manage, 
and analyze on- and off-farm data in real-time for practical and relevant analyses that 
can be used to improve on-farm decision making. Hence, we are developing a real-
time, data-integrated, data-driven, continuous decision-making engine: The Dairy Brain 
by applying Precision Farming, Big Data analytics, and the Internet of Things. This 
is a trans-disciplinary research and extension project that engages multi-disciplinary 
scientists, dairy farmers, and industry professionals. We are using the state-of-the-
art database management system from the University of Wisconsin-Madison Center 
for High Throughput Computing to develop our Agricultural Data Hub that connects 
and analyzes cow and herd data on a permanent basis. This involves cleaning and 
normalizing the data as well as allowing data retrieval on demand. We have a four-
part strategy: (1) Create a Coordinated Innovation Network (CIN) to shape data 
service development; (2) Create a prototype Agricultural Data Hub (AgDH) to gather/
disseminate multiple data streams relevant to dairy operations; (3) Build the Dairy 
Brain – a suite of analytical modules that leverages the AgDH to provide insight to 
the management of dairy operations and serve as an exemplar of an ecosystem of 
connected services; and (4) Design and execute an innovative Extension program. 
We illustrate our Dairy Brain concept with a practical application that predicts CM 
onset. The application uses machine learning algorithms to identify cows at higher risk 
of contracting CM seven milkings before the onset. The application integrates data 
from management software and data from the milking parlor. Our preliminary results 
indicate that our predictions are 72% accurate. Integration of more data streams 
and incorporating larger historical datasets will improve accuracy even further. We 
demonstrate that it is possible to develop integrated continuous decision-support tools. 
Tomorrow’s dairy industry will be built on the effective capture and integration of more 
data streams, not fewer. This is a critical moment to develop the structures that can 
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Introduction

The Dairy Brain 

move the industry towards modernized data exchange. This is an ongoing innovative 
project that is anticipated to transform how dairy farms operate.

Keywords: Data integration, decision support tools, dairy brain.

Dairy farms generate large amounts of data. With the adoption of new technologies 
these amounts of data have increased. These data are an important tool to help improve 
farm decision making in animal welfare, performance, and long-term sustainability of 
the farms (Lovarelli et al., 2020). Nevertheless, using data in efficient way is a complex 
task as it is highly heterogenous, different data sources are normally independent 
from each other (Wolfert et al., 2017) and the analysis of big data is a challenging task 
(Morota et al., 2018). 

As a result, daily management is a difficult task since data integration of different data 
sources (i.e., production, feeding, health, etc.) is lacking (Koltes et al., 2019; Cockburn, 
2020; Cabrera and Fadul-Pacheco, 2021). It has been recognized that collection, 
aggregation and analysis of data will transform the way decision making is done, 
making farms realize large gains in productivity, efficiency and profitability (Bronson 
and Knezevic, 2016; Newton et al., 2020) and providing farmers a better understanding 
of the past, present and future of the farm (Lioutas et al., 2019). 

Data integration is crucial to improve data quality and algorithm performance (Hogeveen, 
et al., 2010; Menéndez González et al., 2010) and it has been identified to be an 
important component to the decision-making process on dairy farms (Eastwood et al., 
2017; Dairy Brain, 2020a). In addition, automatized data integration is recognized as 
a tool to give holistic advice on management practices (Gengler, 2019). 

Knowing the potential benefits of data integration, it is imperative to develop a system 
that can collect, integrate, manage, and analyze on- and off-farm data in real-time for 
practical and relevant analyses that can be used to improve on-farm decision making. 
Hence, we are developing a real-time, data-integrated, data-driven, continuous decision-
making engine: The Dairy Brain by applying Precision Farming, Big Data analytics, 
and the Internet of Things. This is a trans-disciplinary research and extension project 
that engages multi-disciplinary scientists, dairy farmers, and industry professionals.

The Dairy Brain project as a continuous decision-making engine as described on Figure 
1, first data is collected at the farm, then farm data from multiple sources is transferred 
to a central location, where data is transformed and homogenized to then apply 
analytics to it and finally access to the developed analytics farmer via web interface. 
It consist of a four-part strategy: 1) Create a Coordinated Innovation Network (CIN) to 
shape data service development; 2) Create a prototype Agricultural Data Hub (AgDH) 
to gather/disseminate multiple data streams relevant to dairy operations; 3) Build the 
Dairy Brain – a suite of analytical modules that leverages the aggregation service and 
available data to provide insight to the management of dairy operations and serve as 
an exemplar of an ecosystem of connected services and 4) DataMoney: an innovative 
Extension program.
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Figure 1. Dairy Brain project phases.

Create a Coordinated 
Innovation Network 
(CIN)

A Coordinated Innovation Network (CIN) is, in general, “a large community of 
stakeholders that addresses bottlenecks in critical areas by bringing together experts 
from different disciplines and domains to identify innovative and synergistic solutions” 
(USDA, 2021). In the context of the Dairy Brain project, the bottlenecks make reference 
to the data management challenges in the dairy industry. Therefore, the CIN of the 
dairy brain project is a network of stakeholders from the dairy industry (i.e., farmers, 
industry, researchers and extension professionals) shaping the structure of the Dairy 
Brain project itself and serving as a basis for broader implementation of data services 
and standards. 

The main roles of the CIN are to raise awareness, facilitate the exchange of opinions 
and generate discussion and crate guidelines about data management in the dairy 
industry. To start the discussion process, the CIN published five opinion articles that 
covered some data management challenges that were identified by the CIN members 
and the Dairy Brain team. 

The first was an introductory article to the Dairy Brain project and the roles of the 
CIN (Dairy Brain, 2020a). This was followed by a discussion about data security and 
data privacy (Dairy Brain, 2020b). The next article was about data collection and data 
standardization (Dairy Brain, 2020c). Then, another article was the adoption of decision 
support tools (Dairy Brain, 2020d), and the last opinion article was related to the value 
added of data to help improve management practices at the farm (Dairy Brain, 2020e). 
These opinion articles are the foundation for more technical and scientific articles: 
the CIN design documents, which are under development. To learn more about the 
perception of a number of key topics related to data challenges in the dairy industry, 
we are currently conducting a survey at DairyBrainSurvey (https://uwmadison.co1.
qualtrics.com/jfe/form/SV_0HDBzawvvRygQVE).
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Farms have different data sources that are normally not connected to each other, to 
address this issue, the main objective of the agricultural data hub (AgDH) is to collect, 
integrate and homogenize the dairy farm data so that all these data can be used by 
the DairyBrain to develop decision support tools. Data integration through the AgDH 
consist in five main steps: 1) Assessing; 2) Decoding; 3) Cleaning; 4) Homogenization 
and 5) Integration. The AgDH is built in a modular fashion under the consideration 
that these five steps will be automatized with minimal or no human supervision. Once 
the data is fully processed, these integrated data will be accessible through a set of 
application programming interfaces or API’s endpoints hosted by the AgDH service. 
It is important to mention that these endpoints will be secure so that only individuals 
authorized by the farm will have access to them. Also, the API’s will make the data 
available to the analytical module offered though the DairyBrain portion of our project.

The actual Dairy Brain portion of the project is a data-driven engine of decision 
making to advance analytics and dairy farm sustainability. We categorize our models 
as descriptive, predictive and prescriptive. The descriptive models are normally for 
short-term decision making, and they are mainly visualizations (i.e., dashboards). They 
might also include some simple calculations, as for example, feed efficiency. Even 
though feed efficiency is based on simple algorithms, it requires data from different 
data sources which means it needs data integration. 

Predictive models include performance projections to the future. One example of this 
type of models is selection of genetic traits to reduce the incidence of clinical mastitis 
(Fadul-Pacheco et al., 2021). And, finally, the most advanced, the prescriptive models 
are those that provide suggestions, mostly from optimization, of the best course 
of action. Among these models we can find the continuous nutritional accuracy 
(Barrientos‑Blanco et al., 2020) that can help provide accurate diets to cows as an 
effective strategy to control cost, increase revenue, enhance feed efficiency and reduce 
environmental impact. It is important to keep in mind that all these models need to 
be adjusted with continuous data. Data integration from multiple data sources though 
the AgDH and the application of advance analytics is an example of added value to 
the raw and disparate data. 

The objective of the extension program of the Dairy Brain project is to increase farmers, 
advisors, and county educators’ awareness on data use and management at the farm 
level. More precisely, demonstrate the benefit of data integration and the appropriate 
use of decision support tools. We have developed a program called “DataMoney.” 
The program consists in working individually with farm teams in particular farms. The 
first step is to perform an assessment of the data usage at the farm and, according to 
the farm priorities, needs assessment, and farm data availability, work collaborative 
developing farm-specific decision support tools. This process will spark farmer and 
farm workers interest in the use and application of farm data for better decision making.
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For most people, blockchain technology is associated with bitcoins and other 
cryptocurrencies: An intriguing, wild-west, fast-money, hard to understand, virtual 
economy, that has nothing to do with real tangible processes like the production of milk. 

This is a misconception as blockchain technology brings great opportunities for the real 
world too. Large companies like IBM and Microsoft have become convinced about this 
and invested heavily in so called “Third Generation Blockchains”. These are without all 
the obscure “bitcoin like” features and designed specially for supply-chains. 

Qlip has embraced this new technology to create a platform for the Dutch dairy Industry 
because it brings two big advantages for the future: 

•	 It helps to improve cooperation: The technology used in a blockchain makes that 
you can be absolutely sure that shared data is only visible for that specific “other” 
stakeholder and for no-one else. In a normal central database there is always an 
“administrator” who can access all stored information. This unwanted feature makes 
dairy companies reluctant sharing data on a central platform (and thus prevents 
cooperation and efficiency). 

•	 It is a great opportunity for tracking & tracing and food provenance. There is 
absolutely no possibility to tamper with data in a blockchain, without anyone (or the 
blockchain network itself) noticing it. This makes it the ultimate technology for food 
supply chains where tracking and tracing and food provenance are of the utmost 
importance. 

The only way you really can be sure that the above-mentioned advantages really exist, 
is by investing in knowledge. That is the only way to be able to be certain that you can 
trust blockchain technology. This advice is especially relevant for business people. 
That does not mean that business people need to learn how to program a blockchain, 
but you need to understand what technical concepts are implemented so you don’t 
have to believe that blockchain brings value, bat that you know that blockchain brings 
value and even more important: you understand how it brings value. 

in this trust for ourselves, Qlip started to build a blockchain for raw milk. Three different 
dairy companies participated. Every milk collection of the participating dairy companies 
is stored in a blockchain. You are only able to see a milk collection if you are the 
delivering party or the receiving party. We experienced that this new technique brings 
great opportunities for the future. 

Introduction

Trust is essential

Bring value to 
the Dutch dairy 
industry
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Our ambition is to create a new digital infrastructure for all the raw milk that is produced 
in Holland. With this you can make al information about milk collections available to 
whoever receives the milk. 

This dairy blockchain could be used for several things.

•	 Reduction of administrative or inspection costs because all data is tamper free 
stored and can be provided to a inspector if you choose so.

•	 If a dairy producer chooses to share his production data (form the manufacturing 
plant) on the blockchain to, you could print a QR code on the package and so give 
the end consumer insight in what milk was used for his end product (i.e., infant 
nutrition for export markets)

•	 When milk is exchanged it is much easier to be sure that it is Dutch milk or foreign 
milk to see what type of milk it is, what the lab results are etc. 

Plans for the 
future
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In Finland there is one milk recording organisation called ProAgria. There are currently 
4,009 recorded herds (71% of all herds) and 211,369 cows (83% of all cows). Milk 
recording is mostly done by farmers themselves, distribution between methods are A= 
2 %, B= 93 % and C= 5 %.  There is effective network around milk recording. ProAgria 
is leading and organizing it, analysing of samples is done by the dairies and calculation 
and reporting to customers is done by Mtech Ltd.  

Keywords: Milk recording, network.

ProAgria organises the milk recording in Finland. Association of ProAgria Centres is 
coordinating and supporting a network consisting of ProAgria area centres, Mtech, 
dairy laboratories and customer service. Figure 1 illustrates the network. 

In practice running milk recording in a network means that there must be someone 
who keeps the strings in their hands. This person works in the Association of ProAgria 
Centres. She leads the development, and the customer service and takes care that 
everybody in the network is aware of new practices and tools in milk recording. 

As stated, most test milkings (93%) are done by farmers. There are guidelines and 
instructions for them how test milking should be done. If there are challenges with 
test milking, technical expert can consult the farmer. In the future, standard operation 
procedures (SOPs) will be created for test milking and they are delivered to customers.

There are two major sources to develop calculation and reporting: feedback from 
customers and  ICAR guidelines. Feedback is collected via customer service, chat, 
email and experts from ProAgria Centres. We also have good connections to ICAR, 
because experts from Mtech and ProAgria have members of ICAR working groups and 
sub-committees. Every third week, there is a meeting with ProAgria and Mtech where 
all the feedback and expert comments are reviewed and decisions are made on the 
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Figure 1. Milk recording network in Finland.

Analyzing milk 
samples

Customer service

further handling of the cases. Yield calculation, reporting and the related development 
takes five person-years from Mtech and 0,2 person-years from ProAgria.

Milk analysis is handled by dairies. There are three laboratories in Finland and about 
1,2 million samples analyzed per year. There is one meeting per year between ProAgria 
and every laboratory, and additional meetings whenever necessary. If there are quality 
problems in samples, that information goes from the laboratory to the customer service 
and customer service contacts the customer and tells him what the problem is and 
what should be done better next sampling. If the laboratory needs development, then 
ProAgria and laboratory staff will have a discussion.

Customer service assists the farmers, stakeholders and ProAgria experts. Service 
is available via phone, email, and chat. The Customer service develops data quality 
together with area centres and contacts customers that have low data quality points. 
The Customer service can also for example take remote access to an AMS and help 
with data transfer when needed. There is three person-years working in the customer 
service. 

 
 
Figure 1. Milk recording network in Finland 
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Conclusions

Farmer can buy service for test milking so that they can outsource it partly or completely 
to a ProAgria technician. These services are organized by ProAgria centres and the 
Association of ProAgria Centres is responsible for the education of experts and service 
development. 197 customers purchased this service in 2020 and 1.4 person-years 
were used.

Farmers can buy a service to record their data to the database. An expert will then take 
the data directly from the milking system or the farmer can send data by mail, email or 
via WhatsApp. This service is organised by three area centres and there have been 
352 customers in 2020, with 1 person-year used on this.

All portable milk meters are tested in one testing place, in Riihimäki. Meters are 
transported by mail to the testing place and back to customer. In 2020 there have been 
730 customers and two person-years have been used. Stationary AMS and parlour 
meters are mostly tested by manufacturer servicemen. 

The ProAgria milk recording in Finland is running effectively. We spend 13,2 person‑years 
running the system, also including its development. The system is working satisfactorily, 
but there is need for make it more linear from the customer point of view. The number 
of recorded herds will decrease in the coming years and there will be lot of new tools 
that are offered to the farmers from other operators. In the future, we must have more 
time to develop better services for milk recording. 
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AbstractThe ICAR Board based on interest of Breeding Organizations (BO) agreed to include 
performance recording and genetic evaluation of Equus genus into its programs. The 
ICAR Equid Ad Hoc Advisory Committee (Equid AC) was proposed by ICAR with the 
objectives to evaluate the benefits that ICAR can provide in the fields of performance 
recording and genetic evaluation to current ICAR members and other equids’ 
organisations. The priorities for the Equid AC are to establish a list of worldwide contacts 
involved in Equid recording and genetic evaluation and to liaise with ICAR governing 
and technical bodies to identify the range of activities that ICAR could potentially 
offer to support recording and genetic evaluation of equids. In order to achieve these 
objectives, a Survey to equid stakeholders have been proposed to determine the scope 
of current and potential future activities that could be supported by ICAR in the future. 
The Survey has been carried out by the means of a questionnaire including basic 
information and specific questions. The emphasis has been placed on future activities, 
namely parentage verification based on SNP markers. Members of Equid BO have 
been invited to fulfil the questionnaire through online application developed for this 
purpose available at the following link: https://rodica.bf.uni-lj.si/EquidAC. The Survey 
response is in ongoing phase and so far 33 breeding organizations have responded. 
A total of 149,334 animals were included in the breeding work of these organisations, 
comprising approximately 58,997 broodmares and 5,472 stallions. The results are 
encouraging and show the great interest in harmonization under ICAR umbrella for 
almost all traits. To evaluate feedback from Equid interests, a comprehensive report 
with recommendations will be prepared for consideration by the ICAR Board.

Keywords: Equus genus, Equid AC, Breeding organisations, Survey, Online application.
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Performance recording in horses and donkeys is not yet standardised worldwide. 
Therefore the ICAR Board, recognizing the interest of Breeding Organisations (BO), 
agreed to include performance recording and genetic evaluation of Equus genus into its 
programs. The first step was to establish the ICAR Equid Ad Hoc Advisory Committee 
(Equid AC) following Terms of Reference (ToR) with the objectives to evaluate the 
benefits that ICAR could provide in the fields of performance recording and genetic 
evaluation to the current members of ICAR and other organisations interested in the 
Equus genus. The following priorities of the Equid AC have been pointed: 

1.	 Establishing a comprehensive list of worldwide contacts with an interest in Equid 
recording and genetic evaluation.

2.	 identifying the range of activities that ICAR could potentially provide to support 
equid stakeholders.

3.	 Conducting a Survey of Equid interests.

4.	 Evaluation of feedback from equid stakeholders by preparing a comprehensive 
report with recommendations for consideration by the ICAR. 

In order to achieve these objectives and get feedback from the worldwide BO, the 
Equid AC developed online data collection through Survey. The questionnaire concern 
interest in performance recording, parentage verification, and genetic evaluation of 
Equids. The main breeds of interest are local (indigenous) horse and donkey breeds 
which lost economic value over the last century.

The Survey was developed with the assistance of all Equid AC members. The 
questionnaire included basic information (BO contact data, country, city, address, 
e-mail, contact details of organization representative person) and specific questions 
including information about the breed (breed and breed type, number of breeders, 
number of equines, number of breeding animals - broodmares and stallions, and 
number of foals), main and optional use of the breed, information about parentage 
verification and parentage verification method, selection criteria (main and additional 
traits according to breeding programme), and future plans and interests (parentage 
verification, collaboration with ICAR, potential traits of interest and future activities). The 
Survey has been hosted at the University of Ljubljana, Biotechnical Faculty, Department 
of Animal Science and accessed via link https://rodica.bf.uni-lj.si/EquidAC. A link to an 
online questionnaire was distributed via e-mail lists from BO. The Survey was launched 
in September 2019 and is in ongoing phase. At the beginning, the response was lower 
than expected because of several reasons such as English language (many people are 
not familiar with foreign language), lack of knowledge, lack of relevant contacts for each 
breeding organization – often volunteer / not professionals in breeding organisations). 
For the last, the European Regional Focal Point for Animal Genetic Resources i.e. 
National Coordinators were involved to obtain relevant BO contacts. The feedback 
was positive and questionnaire was sent to many BO. Since the most of the contacted 
persons need to be reminded several times before responding, the automatic reminder 
was generated under the online application. 

Statistical package SAS (SAS Inst. Inc., 2009) was used to analyse data and to perform 
descriptive statistics and graphs. 

So far 33 BO have responded to the online Survey (Figure 1). Most of them bred 
warm-blood horse breeds (around 50%). The rest includes cold-blood breeds (25%) 
followed by pony and small horses (13%).

Introduction

Material and 
methods
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Results and 
discussion

Figure 1. Distribution of breed type by breeding organisations

All together around 31K breeders have participated in the work of BO. A total of 150K 
animals are included in these organisations, comprising about 59K broodmares and 
5,500 stallions (Table 1). 

Main use of the breed refers to the most important traits according to the economic 
use and breeding objectives (riding school, leisure, sport driving, agricultural work, 
milk production, etc.). For majority of BO, sport riding (33%) is the most important trait, 
followed by leisure, leisure riding, agriculture work, meat production, and leisure driving 
(Figure 2a). The questionnaire also provides possibility to select optional use of breed. 
The most important optional use of the breed is leisure driving (around 30%), followed 
by leisure riding, sport riding, meat production, and tourism (Figure 2b).

Most BO perform parentage verification for all registered animals (Table 2), however 
in some no parentage verification is used. Parentage verification method is based on 
the ISAG standard microsatellite (MS) test (62%) and own MS test (38%).

 
Table 1. Number of breeders, horses, broodmares, stallions, and foals. 
 

Item Mean Std Min Max Sum 
Members/ breeders 1068.0 1,761.3 1.0 9,000.0 30,972.0 
Horses 5,333.4 13,294.3 100.0 70,000.0 149,334.0 
Broodmares 1,843.7 4,034.3 20.00 22,738.0 58,997.0 
Stallions 171.0 247.6 4.0 1000.0 5,472.0 
Foals per year 895.2 2,477.3 15.0 13,652.0 26,857.0 

 
 
Table 2. Group of animals used for parentage verification by Breeding Organisation (BO). 
 

Parentage verification N1 % 
Not in use 5 16.1 
Breeding stallions 4 12.9 
Breeding animals 2 6.5 
All registered animals 20 64.5 

1N= number of BO. 

 

 
 
Figure 1. Distribution of breed type by breeding organisations. 
 
 
 
 
 

 
 A B 
 
Figure 2a and 2b. Frequency distribution of traits according to main and optional use of the breed. 
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Figure 2a and 2b. Frequency distribution of traits according to main and optional use of the breed.

Figure 3a and 3b. Frequency distribution of the most important traits (left) and additional used traits (right) 
from selection point of view

 
 
Figure 1. Distribution of breed type by breeding organisations. 
 
 
 
 
 

 
 A B 
 
Figure 2a and 2b. Frequency distribution of traits according to main and optional use of the breed. 
 
 
 
 
 
 

 
 A B 
 
 
Figure 3. Frequency distribution of the most important traits (a) and additional used traits (b) from 
selection point of view. 
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From the selection point of view, body conformation (60%) is the most important 
selection trait (Figure 3a) followed by temperament/character (27%) and riding 
ability (6%). The additional traits important for selection purposes (Figure 3b) are 
temperament/character (38%), followed by health traits (24%), riding (17%), and 
driving ability (14%).

For selected traits, recording is performed mostly for the entire population (Table 
3), followed by animals selected for breeding. In small proportion, it is used for only 
breeding females and stallions. Unfortunately, phenotype is still the most important 
criterion for selection (90%). Only 10% of BO performs genetic evaluation.

Questions regarding future plans or interests were related to parentage verification 
method (Table 4). It seems that genomics becomes more important in horse breeding 
since BO started to implement parentage verification using SNP based testing for all 
registered animals. Furthermore, the BOs are interested to include additional traits 
(body conformation and temperament/character) in the breeding program or in recording 
and selection in the future.

The results of the Survey, although not conclusive, are encouraging and show the great 
interest in harmonization under the CAR umbrella for almost all investigated traits. 
Feedback from the Survey will enable the Equid AC to determine current activities 
and potential future activities that might be facilitated by ICAR.

SAS Inst. Inc. 2009. SAS/STAT® 9.2 User’s Guide, Cary, NC: SAS Institute Inc

 
Table 3. Part of the population under performance recording. 
 

Criteria N1 % 
Whole population 13 43.3 
Animals selected for breeding 12 40.0 
Part of population 3 10.0 
Breeding females 1 3.3 
Stallions 1 3.3 

1N= number of BO. 
 
 
Table 4. Future parentage verification method. 
 

Future parentage verification method N % 
ISAG standard MS test1 18 58.1 
Breed specific MS test2 1 3.2 
SNP based test3 12 38.7 

1ISAG – International Society for Animal Genetics. 
2MS – Microsatellites. 
3SNP – Single Nucleotide Polymorphism. 
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Methane (CH4) is one of the major greenhouse gas (GHG) emissions. Along with other 
sources it is naturally produced during the rumen fermentation process of ruminants. 
Different factors could have an impact on CH4 quantity emitted i.e. feed, feeding 
system, herd management or genetic selection for efficient animals. The study aim 
was to compare milk MIR CH4 predictions relevance obtained with different equations 
based on same reference dataset but including or not fix effects (1,203 data). The CH4 
models were built on SF6 tracer gas method and respiratory chambers measurements 
with PLS, CPPLS and GLMNET methods and considered the stage of lactation. The 
model performances have been statistical validated in yearly dairy data production. 
Pearson correlation analysis has been made with milk MIR indicators. For energy 
efficiency were found positive correlation with GLMNET model. Negative correlations 
were found between all CH4 models and blood NEFA, C18-1Cis9, Energy‑Detect, 
KetoMIR, INSAT and positive correlation showed SCFA and MCFA and SAT. The 
GLMNET models showed positive correlation with EB NEL and ME. The correlations 
fit well with the usual metabolic effects of extreme body fat mobilization e.g. an 
increased concentration of NEFA, ketone bodies, long chained unsaturated fatty acids, 
a decreased concentration of MCFA and an extreme negative EB. The effect can be 
explained by reduced feed intake and rumen activity in these situations. The limits of 
applicability must still be defined in order to ensure the relevance of the predictions 
obtained, therefore in ReMissionDairy project the GLMNET model predictions are used 
in a production report for field consultants and advisors in order to reduce the CH4 
emission and the CH4 per kg milk. To better understand the CH4 results team work 
with filed experts and also climatic environmental experts is necessary.

Keywords: MIR spectra, ECM, CH4, energy balance, feed efficiency, energy efficiency

Abstract 
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Mid infrared spectroscopy (MIR) is using the infrared light from the electromagnetic 
spectrum which shows specific absorption patterns when sent through a milk sample 
caused by frequency dependent interactions with the chemical bonds of the chemical 
milk components. With the help of milk MIR spectra, a wealth of information can be 
obtained by establishing relationships with reference methods. Since 2012 researchers 
in the MIR spectroscopy are working on creating predictions models based on milk 
MIR spectral data and dairy cow phenotypes like standard milk components, new 
milk MIR components like ketone bodies (Grelet C. et al., 2016), fatty acids (Grelet 
C. et al., 2014), minerals (Soyeurt H. et al., 2009) and MIR based blood components 
(BHB, NEFA, Glucose, IBF1, Insuline, Calcium) (Dale L. et al. 2019 and traits like 
energy balance (NEL and ME) (Dale L. et al., 2019). The current research focus is 
the detection of indirect quantities, such as: methane (CH4) emissions (Dehareng 
et al., 2012), furthermore Vanlierde (2019) present a set of CH4 models based on 
spectral data and SF6 and climatic chamber measurements. CH4 is one of the major 
greenhouse gas (GHG) emissions. Along with other sources it is naturally produced 
during the rumen fermentation process of ruminants. Different factors could have an 
impact on CH4 quantity emitted i.e. feed, feeding system, herd management or genetic 
selection for efficient animals. The eMissionCow project focused on the prediction of 
emission and efficiency related phenotypes and their potential applications, whereas 
the ReMissionDairy project is testing the estimated values for feed efficiency, energy 
balance and methane emissions on different pilot farms in 4 federal states of Germany. 
The ReMissionDairy projects aim is to develop feeding strategies to increase efficiency 
and to decrease emissions of CH4. The study aim was to compare milk MIR CH4 
predictions relevance obtained with different equations and compare energy balance, 
energy efficiency and different CH4 equations based on MIR spectra predictions. The 
objective of this study was to evaluate different CH4 equation based on SF6 tracer 
gas method and respiratory chambers in order to improve the quality of the predictions 
obtained and choose the best model. 

From the work at the Walloon Agricultural Center and University of Liege, Gembloux 
Agro Bio-Tech, in cooperation with OptiMIR/EMR partners, the Methagene Group 
and the European project GplusE, a CH4 equation with SF6 tracer gas method 
and respiratory chambers measurements was created. The spectral data set was 
first standardized by applying the OptiMIR/EMR method (Grelet et al., 2015) and 
pre‑processed by Savitzky-Golay first derivative to remove the offset differences 
between samples for baseline correction, before performing Legendre polynomial 
modelling. To identify the main variables that were positively or negatively associated 
with CH4 emission, the data was submitted to polynomial regression in combination 
with lasso parameter optimization as implemented in the “glmnet” R package.

The Legendre polynomial data based on DIM for the 212 OptiMIR wavenumbers 
of spectral data were used as input variables. The global spectrometric equations 
for energy balance calculated by the two evaluation systems net energy lactation 
(NEL) (GfE, 2001) and metabolizable energy (ME) (Susenbeth, 2018) is the result 
of a collaboration between the German optiKuh project consortium and the “German 
Association for Quality and Performance Testing e.V.” (DLQ). optiKuh is a collaborative 
project, of 12 research farms from different German states such as Baden Württemberg, 
North Rhine-Westphalia, Bavaria, Schleswig-Holstein, Rhineland-Palatinate, Lower 
Saxony and Mecklenburg-Western Pomerania, funded by the German Federal Ministry 
of Food and Agriculture. Between 2014 and 2017 a dairy cow feeding experiment with 
weekly collection of milk samples and daily individual feeding data provided reference 
values of both energy balances (NEL, ME). The local MROs and associated milk 
laboratories, organized in DLQ, provided milk recording results and standardised as 
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well as non-standardised MIR spectral data from FOSS and Bentley FTIR analysers. 
With financial support from DLQ the weekly milking and MIR spectral data were 
combined with energy balance data to establish the MIR calibration equation of the 
two energy balances. Following the same Methodology and using the same optiKuh 
feeding experiment data source energy efficiency reference values and MIR spectra 
were combined within the eMissionCow project. The energy efficiency is defined here 
as the quotient of the energy intake and the amount of ECM per cow and day. Global 
models for energy efficiency NEL and ME and feed efficiency with a cross-validation 
trial from all research farms with around 1,511 animals were then created. In order 
to evaluate the effect of non-optimized feeding regimes on animal health, veterinary 
diagnosis and treatment data were linked from the LKV BW dairy database. This type 
of data is routinely recorded at LKV BW starting with the GMON project in 2011 for 
around 1,000 farms. Combined with milk recording data each milk sample from these 
farms can be associated with a health status.

The CH4 calibration model was performed with 10-fold cross validation on a subset 
of 1,203 samples. This model is now also available to DLQ through the eMissionCow 
project as a new consortium member. The CH4 model is expanded to include 
measurements on Simmental cows. This increased the variability of the data and the 
robustness of the equation (Table 1). With a RPDcv of 1.8 it can be used for distinction 
of high and low values. Nearly 26,000 energy balances on NEL basis and nearly 29,000 
energy balances on ME basis of the 12 experimental farms have been used for the 
new equations. It can be emphasized that there is a difference of 0.5 in RPD (Table 1.) 
between standardized and non-standardized devices. But for a better variability and 
a better robustness of the models, we have combined the standardized and non-
standardized spectra and this model will be used for validation in commercial herds. 
It has to be pointed out that for the non-standardized spectral data only a maximum of 
1 % relative deviation between the official fat content provided by the laboratories and 
the fat content derived from the RobustMilk MIR equation was accepted.

Results and 
discussions

Table 1. Milk MIR models for CH4 emission and energy status. 
 

Milk Biomarker Unit #LV ɸ SD SEC R²c SECV R²cv RPD Use
CH4 Emission [g/d] 12 1266 97.00 50.00 0.73 54.00 0.69 1.80 -1 
Energie Balance – NEL* [MJ/d] 12 2.47 17.29 8.27 0.75 8.27 0.75 2.00 
Standardized  7.53 0.84 2.50 
Not Standardized  8.08 0.76 2.00 

02 

Energie Balance – ME** [MJ/d] 12 0.08 23.54 8.99 0.85 8.94 0.85 2.58 
Standardized  8.42 0.89 3.05 
Not Standardized  9.06 0.84 2.48 

0 

Energie Efficiency – NEL [MJ/kg] 8 2.47 17.29 0.27 0.89 0.27 0.89 3.00 
Standardized       0.28 0.90 3.10 
Not Standardized       0.29 0.88 2.93 

+3 

Energie Efficiency - ME [MJ/kg] 8 7.54 1.48 0.42 0.91 0.42 0.91 3.26 
Standardized       0.42 0.91 3.30 
Not Standardized       0.46 0.89 3.05 

+ 

Feed Efficiency [ECM/kg] 10 1.54 0.27 0.09 0.90 0.08 0.89 3.03 
Standardized       0.08 0.90 3.13 
Not Standardized       0.08 0.88 2.97 

0 

1Use “-” means RPD between 0-2 a very poor model class with application as allowing to compare groups of cows 
and distinguish between high or low values. 
2Use “0” means RPD between 2-3 a poor model class with application as rough screening. 
3Use “+” means RPD between 3-5 a fair model class with application as screening. 
*NEL balance (GfE 2001); ** ME balance (Susenbeth, 2018) 
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Figure 1. Absolute and relative (per kg ECM) calculated CH4 emission over weeks in lactation in 
different feeding regimes

Figure 2. Absolute and relative CH4 and ECM according detected health 

Therefore, the equation quality is better and the RPD is higher as 2. In the case of the 
feed efficiency the RPD is between 3 and 5 (Table 1.), which means: the equation is 
satisfactory and can be used for fine grading. With the same data was modelled the 
feed efficiency in kg ECM/kg dry matter intake. Here the RPD is more then 3 (Table 1.). 
Figure 1. shows the predictions of the CH4 equation with spectral data from the optiKuh 
project for each lactation week. It can be seen that the coloured data series are different. 
This is due to the four different feeding regimes, based on rations with 6.1 and 6.5 MJ 
NEL per kg forage DM and each with lower (N) or higher amounts of concentrates (H). 
The graph on the left shows the CH4 emissions in grams per day, the graph on the 
right shows the CH4 emissions relative to milk, in grams per kg ECM. The difference 
is much clearer visible in the relative emission. In the range from 100 to 270 lactation 

 

 
Figure 1. Absolute and relative (per kg ECM) calculated CH4 emission over weeks in lactation in different feeding 
regimes. 
 
 

 
Figure 2. Absolute and relative CH4 and ECM according to detected health. 
 

 

 
Figure 1. Absolute and relative (per kg ECM) calculated CH4 emission over weeks in lactation in different feeding 
regimes. 
 
 

 
Figure 2. Absolute and relative CH4 and ECM according to detected health. 
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Figure 3. Absolute and relative CH4 and feed efficiency according detected health.

days, the values of the different feeding regimes differ most clearly. The differences 
between the rations with lower or higher amounts of concentrates also appear very 
clearly here. It is very easy to see that feeding regimes with lower energy density of 
forage and low amounts of concentrates and a higher proportion of forage, have more 
CH4 per day and kg of milk than feeding regimes with higher energy. In cooperation 
with eMissionCow and ReMissionDairy a report draft has been prepared for LKVBW 
test farms in order to evaluate the relevance and usability of the new predictions for 
herd management. The reports were designed for farmers and consultants: In the 
“Climate Status: CH4, feed efficiency and energy status report” can be seen the milk 
MIR parameters that reflect the energy status of the cow or herd. What is displayed: 
first two main groups of fatty acids: the de-novo group which consists of short and 
medium-chain fatty acids, mostly formed from the feed, and the preformed group that 
consist on long-chain fatty acids, mostly from the metabolization of body fat. Then there 
is energy balance: here is the NEL energy balance, feed efficiency, energy efficiency 
and energy consumption, and last CH4 with absolute CH4 in grams/day and relative 
CH4 in grams/ECM kg. Also, in the report it can be seen a set of plots displaying the 
link between milk parameters and daily CH4 emission and daily CH4 emission per 
ECM kg (Figure 2).

In the Figure 2 it is shown the daily ECM kg over CH4 emission. Compared to the left 
plot one can see that the milk yield has a stronger and clearly negative correlation 
with CH4 emission per kg ECM showing that cows with higher ECM yields have a 
lower CH4 emission per kg ECM. Figure 3. shows the link between energy efficiency 
and CH4 emission. Again, it can be seen a better correlation with CH4 emission per 
kg ECM. It is underlined that cows with a lower CH4 emission per kg milk also have a 
better energy efficiency meaning less energy is used per kg ECM. The main message 
to be provided to the farmer and advisor is that the predictions should be kept well 
within borders for which reasonable thresholds have to be developed. Here is also 
shown higher degree regression curves with standard error borders. Furthermore, 
the veterinary diagnosis registered for the cows near the milk recording date were 
also plotted in different colours: e.g. the fertility or reproduction problems were plotted 
in green, the udder diseases are in orange, the metabolic distortion are red, etc. It 
can be seen that cows with health problems appear rather at the borders and it can 

 
 
Figure 3. Absolute and relative CH4 and feed efficiency according to detected health. 
 
 
 
 
 

 
 
Figure 4. Absolute and relative CH4 and energy intake from feed dry matter according to detected health. 
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Figure 4. Absolute and relative CH4 and energy intake from feed dry matter according 
detected health.

Figure 5. Absolute and relative CH4 and energy balance NEL [MJ] according detected 
health.

tell whether the herd management goes in the right direction with regard to feeding 
efficiency management. This link has to be elaborated further. In the Figure 4. it can 
be seen the plots over absolute and relative CH4 emission per day and energy intake 
from feed dry matter. 

The plots show the energy intake per kg dry matter and the higher energy concentration 
in the feeding is linked with the lower CH4 emission per kg ECM. The plots at the 
bottom show the link to energy balance again on the right side with a stronger and 
clearly positive correlation to CH4 emission prediction per kg milk. Though negative 
energy balance (Fig. 5.) is linked to lower CH4 emission this should be avoided 

 
 
Figure 3. Absolute and relative CH4 and feed efficiency according to detected health. 
 
 
 
 
 

 
 
Figure 4. Absolute and relative CH4 and energy intake from feed dry matter according to detected health. 
 
 
 

Figure 5. Absolute and relative CH4 and energy balance NEL [MJ] according to detected health. 
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because extreme negative energy balance comes mostly with reduced feed intake. 
Extreme body fat mobilisation followed by health problems. This is indicated by the red 
versus the green bounded area. There is a correlation between diagnosis frequency 
in that day and the relative CH4 emission per day but also to other milk component 
concentrations. The diagnoses observed on that testday were mainly lameness but 
also udder und metabolic or reproduction diseases. It has been determined that the 
diagnosis frequencies had positive correlation to fat and almost all fatty acids (FA) 
groups but not with De Novo FA. In the same time, it can be seen that CH4 had a 
positive correlation to energy intake from feed dry matter as well as ECM and MY and 
also to DeNovo FA. Negative Pearson correlation to CH4 was found for fat, protein, 
feeding efficiency, as well as to lactoferrin, natrium and magnesium, also to blood 
components: adiponectin, insulin, IGF, Preform FA and C17 and total C18.

The Clima Status report for farmers and advisors emphasises energy related MIR 
predictions. The report is designed to show the link between these predictors in order 
to help them understand the effects and improve the feeding management. The 
equations for the determination of CH4, the energy balances (NEL, ME) and the feed 
efficiency (NEL, ME) are statistically highly meaningful and allow a comparison between 
groups of cows. The future developments that could be carried out at all levels are for 
example reports and applications for feed and energy efficiency, because MIR-based 
applications for reducing emissions and optimizing feeding are good tools for reducing 
emissions and optimizing feeding. Another future development could be the calculation 
of new breeding values based on correlations between genetics and MIR indicators.

The EE, FE and EB NEL and ME work was part of the collaborative project optiKuh, 
funded by the German Federal Ministry of Food and Agriculture. The KetoMIR2 model 
was conducted within the COMET-Project D4Dairy (Digitalisation, Data integration, 
Detection and Decision support in Dairying, Project number: 872039) that is supported 
by BMK, BMDW and the provinces of Lower Austria and Vienna in the framework of 
COMET-Competence Centers for Excellent Technologies. The COMET program is 
handled by the FFG. 10 years (2011-2021) of spectral standardization. This work was 
concepted by CRA-W, founded by OptiMIR project with the support of INTEREG IV 
B and it is under enhancement and continuous development of EMR-EEIG. Clima 
Status report is part of eMissionCow and also to ReMissionDairy projects, funded the 
German Federal Ministry of Food and Agriculture.
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Mastitis and milk quality in dairy cows are an ongoing concern of great relevance to 
animal welfare and productivity in modern dairy production. High somatic cell scores 
(SCS) are an indirect measure of presence of mastitis and low milk quality, they are 
relatively easy to record and values of heritability are higher than records of mastitis. 
However, published SCS values are highly variable across studies which makes it 
impossible to have a reliable reference value. The objectives of this study are to perform 
a meta-analysis (1) to estimate this reference value and the extent of its variability and 
(2) to identify whether and how factors of variation (year and country of publication, 
parity, and breed) influenced this value. Information on SCS was retrieved from 138 
papers published between 1979 and 2020 in 40 countries and analyzed with the Metafor 
package in R software. Standard deviations were estimated from available data or 
imputed using a Bayesian hierarchical modelling approach. Results of the meta-analysis 
revealed a significant decrease of 0.04 units in mean SCS with the year of publication, 
an increase with the number of parities and a significant variability across countries. 
The reference SCS value was estimated at 3.68 (3.59 - 3.76) and total heterogeneity 
across studies at 1.24 (1.11-1.38). Further analyses are necessary to verify arguments 
provided to explain the results. 

Keywords: SCS, meta-analysis, dairy cattle, risk factors, mastitis.

Ensuring high quality of milk products is of crucial importance as they are part of the 
official nutritional recommendations in many countries worldwide (Rozenberg et al., 
2016). Globally, cow milk represents 80% of total milk production in all regions (Navarro 
and Emery., 2015) and its consumption has spread around the world in the last forty 
years (Wiley, Andrea S, 2007). Milk quality depends on many factors, one of which 
is very important, namely the number of somatic cells (SCC) it contains. Indeed, high 
milk SCC are an indicator of subclinical infections (Heringstad et al., 2000; Pösö and 
Mäntysaari, 1996) which is associated with low milk production (Sert et al., 2016), 
deteriorated flavor quality and shelf life (Sobczuk-Szul et al., 2015), reduced milk 
processing yield (Najafi et al., 2009) and low protein content (Sharma et al., 2012). 
Besides infection, many other factors influence directly or indirectly milk SCC. They 
include cow characteristics (e. g., parity, season of calving, age, stage of lactation, udder 
conformation), geographical regions (e.g., temperature and humidity) and management 

Abstract

Introduction 
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factors, (e.g., transition to an automatic milking system, herd size (Barkema et al. 1998; 
Feliciano et al., 2020; Oleggini et al., 2001; Van den borne et al., 2021). 

It is therefore not surprising that SCC values reported in the literature are variable. 
However, a part of this variation is also associated with random errors during the 
measuring process. Several measures (e.g., Q test, I² statistics, funnel plots) have been 
proposed to quantify heterogeneity of results across studies and to determine whether 
this heterogeneity goes beyond what would be expected by chance (Sedgwick, 2015; 
Melsen et al., 2014). If it is the case, alternatives exist to study the reasons for this 
heterogeneity and to generate a pooled SCC value (Cordero and Dans, 2021) such 
as the meta-regression models (Baker et al., 2009).

The goal of this study is to explore the diversity in SCC values reported in the literature 
and to determine the level of heterogeneity across studies.

The first step consisted in searching the web with a combination of keywords and 
subject headings for the following concepts: “Somatic Cell(s) Count(s)”, “Somatic 
Cell(s) Score(s)”, “Dairy Cattle”, “factors affecting somatic cell(s)”, “parity”, “season”. 
Globally, articles must have been published between 1970 and 2020 and include 
information related to a measure of SCC. Measures of SCC included test-day and 
lactation averages. Reports were mostly written in English, but other languages were 
allowed. Once an article was selected, all articles referenced within it were consulted. 
When available, information on breed, country, parity, and year was retrieved in each 
article. Six authors were contacted personally and provided us information missing in 
their articles (Knob et al., 2018; Pritchard et al., 2012; Heins et al., 2008; McParland 
et al., 2013; Koç, 2007, Koç and Kizilkaya, 2009). Finally, records were stored into a 
Zotero library. 

The second step consisted in standardizing the reported values. Indeed, means values 
were reported as SCC, transformed in logarithm of SCC or in SCS. Herein, SCS were 
all expressed following the proposition of Wiggans and Shook (1987). When available, 
information of the variability around the means was retrieved and transformed into SCS 
standard deviation. When it was not possible to compute these standard deviations from 
the information available in the article, they were imputed following the procedure of 
Sung et al. (2006), assuming missing variances come from same lognormal distribution. 

The last step consisted in evaluating level of SCS heterogeneity across SCS means. 
We implemented two random-effects models with the function “rma” of the “metafor” 
R package to obtain REML estimates of the effects included in both models and to 
create funnel plots (Röver, 2018). Besides the overall mean (fixed intercept), the first 
model included two random effects both assumed to be normally distributed with zero 
mean and with between- and within-study variances, respectively. This model allowed 
us to create the funnel plot and to compute the amount of heterogeneity (ô²) across 
SCS means. Tests for funnel plot asymmetry (which may be indicative of publication 
bias) was obtained with function “ranktest.rma”. In addition to these random effects, the 
second model included the fixed effects of breed and parity of the animals, country of 
publication and the linear effect of year of publication (covariate). This model allowed us 
to estimate the pseudo-R² value, i.e., the amount of heterogeneity that is accounted for 
by these fixed effects. The p-value threshold for statistical significance was set at 5%.
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Figure 1. Funnel plot showing the SCS means (observed outcome) and corresponding 
standard errors for each study 

After editing according to the inclusion criteria, we retrieved 637 SCS records from 
138 peer-reviewed publications in 40 countries. The number of SCS records used to 
compute the mean ranged from 4 (Singh N et al.,2019) to 13 786 064 (Dezetter et 
al.,2015). The number of mean SCS per study varied from 1 to 22. The predominant 
breed was Holstein (58.64% studies), followed by Jersey (4.33 %) and Brown Swiss 
(4.09 %). Most studies were from Europe (46.75 %), Asia (20.60 %) and America 
(17.75 %). 

The SCS mean over all studies is 3.68 (3.59 - 3.76) and Ä² is 1.24 (1.11-1.38). The 
funnel plot (Figure 1) reveals that 95% of the SCS means had standard errors less than 
0.24 units which may suggest a bias in favor of studies with a large number of records. 
Indeed, 65.3% of the studies that reported the number of records used to compute the 
SCS mean signaled more than 1000 records. No significant difference in the number 
of studies on each side of the vertical line on the funnel plot was observed, in line with 
the observation that 57% of the studies reported SCS means lower than 3.68. 

Effects included in the second model accounted for 60.87 % of the heterogeneity across 
the records. Most differences were found across years and countries of publication 
and across parities. The REML estimates of the effects of country and parity are 
given in Figures 2 and 3, respectively. In comparison with Austria, estimates were 
two units higher for countries such as Colombia, Egypt, New Zealand, Poland, South 
Africa and Turkey. Results from New Zealand may be incorrect as the method used to 
transform SCC in SCS was unusual (Lembeye et al., 2015 and Lembeye et al., 2016) 
and this will be corrected in a later report. For the other countries, further analyses 
are necessary to explain differences. Indeed, studies differed in the nature of the SCS 
measure (e.g., lactation or test-day, season of measure), in the individual (e.g., health 
status) and herd characteristics (Khaitsa et al., 1998; Erdem et al., 2010) or weather 
conditions (Carabaño et al, 2014). Figure 3 reveals that REML estimates increases 
across parities, being highest for parity higher than 3. Many possible causes could 
also be suggested to explain this observation. Among others, Sandrucci et al. (1992) 
observed increased amounts of epithelial cells in milk as the number of lactations rises. 
Breen et al. (2009) reported higher risk of clinical mastitis in cows with middle and high 
parity. A final significant effect was the linear reduction of 0.04 units per increased year. 

 
 
Figure 1. Funnel plot showing the SCS means (observed 
outcome) and corresponding standard errors for each 
study.  
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Figure 3. Estimates of the differences in SCS means for dairy cows with respect to parity higher than 
3, adjusted for the effects of breed, country and year of publication.

Figure 2. Estimates of the differences in SCS means for Holstein with respect to Austria, adjusted for the 
effects of parity and year of publication. 

Conclusion

Better management techniques (Hiitiö et al., 2017), utilization of robot milking system 
(Frössling et al., 2017; Johansson et al., 2017) and genetic selection are some of the 
possible explanations for this trend.

The large number of studies from very different environments have allowed us to 
highlight significant differences in SCS across studies linked to parity, year, and 
country of publication. It remains to dissect the results to find clues towards a better 
understanding of these results.
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At the moment, in the Russian Federation there is no established methodology for 
calculating the genomic breeding value of sires and dams. Routine selection (breeding) 
is carried out manually based on the dam’s productivity only. But to perform effective 
breeding, it is important to choose the worst and best cows and rank animals with 
higher accuracy.

Genomic breeding values are widely used all around the world, but have not been 
implemented in Russia due to a lack of a local reference database. Foreign reference 
databases have advantages in size. However, the reliability of ranking animals 
according to foreign bases may be inaccurate due to different conditions of keeping 
animals, climate and other external factors.

In 2020, we launched a project to introduce genomic selection in the Udmurt Republic, 
which is the   fourth largest milk producing region in Russia with many farms. The first 
genomic reference database in Russia was developed for the Holstein breed, the most 
popular dairy breed. This database contains more than 8000 animals with genotypes, 
including cows from frontrunning breeding farms in the region and bulls from the largest 
suppliers of semen in the region. 

In the Russian Federation not all animals have unique IDs. So, at the first stage of our 
work we assigned each animal its own identifier. It is necessary to illustrate pedigree 
reliably. For this purpose phenotypic data was analyzed and filtered. We describe the 
most common mistakes in accumulated phenotypic data and how to process it.

We present our experience in the development of the first genome reference database 
with more than 8000 genotypes, which provides more accurate breeding values 
estimation and information about genetic diseases most represented in the Russian 
Federation. 

The first genomic evaluations were calculated with the single-step genomic BLUP 
(ss-gBLUP) method for the following parameters: productivity, fat (absolute value and 
percentage), protein (absolute value and percentage) and longevity. The reliability of 
estimated genomic breeding values is up to 66%. We show the difference in evaluation 
between the pedigree-based breeding values and genomic breeding values. 

We developed the web service for agricultural holdings which allows accurate breeding 
based on the GEBV (genomic estimated breeding values) and other results of genetic 
tests. Our solution allows breeders to find animals with the large and low genetic 
potential to increase the productivity of the next generation, select animals for crossing, 
and choose animals for embryo transfer, as well as to identify genetic abnormalities 
and economically useful traits in cows at an early stage.
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The population of dairy cattle, represented mainly by the Holstein breed, is located in 
many regions of Russia, where climatic, feeding, and technological conditions vary 
significantly. Most of the cattle are concentrated in the Central, Volga, Southern, and 
North Caucasus districts. According to the Dairy Intelligence Agency, the number of 
dairy cattle in Russia in 2019 was 10.7 million heads with 4.6 million cows among 
them. Of these, the herd of the largest holding is 183 thousand head, with average 
productivity of 8 tons of milk per cow.

There are several types of organizations in Russian dairy cattle breeding and each 
has several distinctive features. There are large and medium-sized agricultural 
organizations, small farms and individual entrepreneurs. The main difference between 
them is in the dairy cattle population distribution. Thus large and medium-sized agro-
holdings account for up to 69.5% of total livestock in Russia, while small farms account 
for 30.5%. In addition, differences are observed in farming conditions and contribution 
to overall dairy production. For instance, the difference in cow productivity can be 
observed between different organization types. The average productivity of dairy cattle 
in Russia was 4642 kg per cow per year of farms, while the productivity of agricultural 
holdings was 6290 kg, and for individual entrepreneurs 3791 kg per cow per year as 
of 2019, the most successful farms produce 13 000 kg per cow on average.

Agricultural organizations are an important player in the dairy cattle sector accounting 
for 85% of all milk production in Russia. The typical customer of the Ksitest company 
is an agricultural organization with a breeding status. The breeding status implies 
some obligations such as annual reports on livestock and productivity of animals and 
fixation of several indicators. Breeding farms are obliged to record inseminations, 
calvings, disposal reasons, evaluation of the exterior, and live weight at various stages 
of an animal’s life. Also, they are required to conduct a control milking at least once a 
month, whereas they record the cow’s milk yield, and send samples to the laboratory, 
determining the minimum fat, protein, somatic cells count, and other indicators. All 
these indicators are recorded in a local herd management program Selex (https://
plinor.spb.ru/index.php?l=0&p=3). In contrast, industrial farms (non-breeding farms) 
are generally not restricted to anything and can only record as much or as little data 
as they find necessary.

The program was registered in 1997 and most of the breeders started to incorporate 
it in their data collection process in the last 20 years. Before that, they had preferred 
to use handwritten cards, which needed to be transferred to the electronic form. Some 
of the animal’s cards go up to the 1970s.

 Some farms can often use a second program for herd management: DairyComp, 
UniForm Agri, Afifarm, and others. Such programs can produce herd reports and reduce 
the human factor in filling data by using chips on animals, as well as automatic data 
collection from milking parlors, the results of control milkings, etc. 

Data collected by breeders may have several problems. While many Russian breeders 
have started to introduce unique identifiers for animals, the data could still have 
some identification issues and, therefore, the pedigree errors. Besides, most of them 
use microsatellites as a kinship analysis, however, there is still data with parentage 
verification by immunogenetics. Therefore, the first step in reference database 
development is to correct all factual inaccuracies and use as much accumulated data 
as possible. Verification of animal records is especially important to get accurate 
estimated breeding values based on pedigree (EBV) and estimated breeding values 
based on genomic information (GEBV).

Introduction
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Russian dairy farms differ in environmental conditions, for instance, in climatic regime: 
Volga and Southern districts average July temperatures are 14,7°-24,7° and 18,0°-
29,4° respectively. There are also differences in feed composition, care, management, 
and breeding programs. Therefore, cows from different Russian districts can not be 
comparable by their 305d productivity. Given this diversity, ranking animals by their 
genomic breeding values is the only way to compare dairy cattle in Russia by their 
genetic worth, and genomic selection seems particularly desirable. 

The proper reference database plays a crucial role in the accurate breeding values 
estimation and is an essential step towards genomic selection implementation. The 
Holstein population in Russia is huge and spread throughout the country in different 
environmental and management conditions, phenotypic recordings of which have 
accumulated over several generations. However, local breeders still use the selection 
based on the dam’s productivity, missing the opportunity of shorter generations and 
higher rates of genetic gain. The objectives of this work are to describe the steps of 
the first reference genomic database formation and to show the main results of the 
genomic evaluation of the Russian Holstein population as a beginning of genomic 
selection in Russia.

As was mentioned before all breeders in Russia have duties on data recording, so 
therefore as a start we use dumps from herd management programs.

The phenotypic data gathered from these programs along with pedigree information 
are reported in table 1.

After uploading animal data to the Ksitest database, we perform pedigree verification. 
Verification helps solve problems such as (1) assigning multiple IDs to the same animal, 
or (2) having multiple records with the same inventory number for different animals. 
Problem (1) can arise, for example, when animals move between farms; problem (2) 
occurs due to the assignment of the same inventory number to two different animals 
from different farms. Errors associated with incorrect assignment of identifiers can distort 

Table 1. Phenotypic data collected from Selex Dairy desktop. 
 

Milk production Milk, kg per day (starting from 5 days after calving) 
sum of milking (in case of 2 or 3 milking times) 
305 days productivity and throughout lactation 
amount of milk fat, protein, somatic cells (laboratory 
checked data) 
daily milk yield in kg/time-consuming for milking during 
the day, min 

Service period The value of the service period in days 

Longevity The value of productive life in the number of lactations 

Insemination Date, bull, method 

Calving Date, result, calf weight, ease 

Other information Dry period (date, method), disposal (reason, date) 
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the breeding index and pedigree. To solve these problems, we assign each animal 
its own unique identifier. This approach allows tracking the movement of animals. For 
example, when the animal’s birth farm and current location are different. To identify 
and correct data errors, we compare phenotypic data, pedigree and other information 
contained in records about the animal. The data is analyzed for inconsistencies in 
total for more than 10 indicators, including: data conflicts in dates of birth; conflicts in 
household data of birth; conflicts in nickname data; conflicts of data on the sex and 
age group of the animal; conflicts in the records of the breed of the animal. Phenotypic 
data derived from the Selex database is also checked for outliers. Besides, we include 
data that is directly confirmed by farmers as reliable.

The process of biological data collection and subsequent genotyping began in the 
summer of 2019 and is still ongoing. There are several ways of getting genotypes: 

1.	 customers collect biological material and we send it for genotyping at the DNA 
Laboratory; 

2.	 customers provide genotypes previously obtained by them at other laboratories;

3.	 we obtain genotypes from international databases (CDCB, GenoEx, WWS), directly 
or through partners. 

Depending on the way the data are accessed, the biomaterial used for genotyping 
differs. Hair follicles from the tail are the most used method because of the ease of 
obtaining and exporting. However, some customers prefer ear tissue sampling instead 
of follicles (<2% of samples). Blood sampling option is still under testing.

The selection of animals for genotyping is based on the goals and financial capabilities 
of farms. Generally, between 100 and 2,000 animals are collected from each farm. The 
main criteria are as follows: mother-daughter pairs or daughters with parents previously 
genotyped are collected; cows should not exceed 10 years of age; cows should have 
milk recordings for at least the first lactation; 305d lactation yield > 2,000 kg.

Genotyping is performed on a medium-density chip - the Weatherbys Scientific Bovine 
VersaSNP 50K. Usually it takes 1-1.5 months from the time the material is collected until 
the laboratory uploads the genotypes to the ftp-server. In addition to data from Bovine 
VersaSNP 50K, we also have genotypes from other chips (EuroG_MD, GGP_HD, 
ZMD, etc.) that differ from the a fore mentioned one in both density and content. An 
imputation procedure between chips is planned to add this data to the database in 
the nearest future.

The quality-check procedure is performed for collected genotypic data. Genotyped 
samples with call-rate < 0.9 and duplicates are removed. Duplicate identification is 
performed with PLINK v1.9 —genome option (Chang et al., 2015). All animals meeting 
the following criteria Z0 <= 0.15 & Z1 <= 0.15 & Z2 >= 0.7 are considered to be 
duplicates and are being removed. The filtered genotypes are then used to search and 
verify the parentage, to identify statuses of farming traits and diseases, and calculate 
genomic breeding values.

Data genotyping
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As the DNA Data Interpretation center accredited by ICAR (accreditation was obtained 
at 08.01.2021), we perform the parentage verification procedure directly according to 
the ICAR Guidelines for Parentage Verification and Parentage Discovery Based on 
SNP Genotypes. 

A single-step Genomic Best Linear Unbiased Prediction (ss-gBLUP) methodology 
is used to predict breeding values of both genotyped and non-genotyped animals in 
order to combine a pedigree and genomic information (Misztal et al., 2009). The fixed 
effects are as a combined effect year-season of first calving, agro-holding, farm, the 
age of heifer at first calving, mother’s lactation number at the birth of the animal, and 
weather conditions. Estimated traits are 305d milk yield (kg), milk fat (absolute value, 
percentage), milk protein (absolute value, percentage), longevity (month).

The quality of data is determined by the coefficients of reliability, i.e. the proportion 
of explained variability by models with the use of all effects. Prediction accuracies of 
EBV and GEBV were expressed as square root of reliability, calculated from prediction 
error variance.

During the project, The Total Merit Index (KSI) was also developed (Miesenberger, 
J., and Fuerst, C., 2006). KSI is composed of estimated breeding values of the most 
valuable productive traits: 305d milk yield (kg), protein and fat content (%), and longevity 
(month). Each breeding value of a specific trait is weighted according to its economic 
importance under the Russian dairy production system. The economic importance is 
measured by the marginal profit per additional unit of the respective estimated breeding 
value in rubles assuming all other traits remain constant (Hazel, 1943). Economic data 
was provided by the Ministry of Agriculture of Udmurt Republic. Milk price is the largest 
contribution in revenue, such that milk with base protein and fat content equal to 25 
rubles per 1 kg. The replacement cost is a main cost factor in the production system 
and amounts to 60 thousand rubles. In general, the profitability of milk production in 
the Russian system is about 10%. The final formula of KSI is following:

KSI = 2.6 ½  * BV305-d milk yield + 2501 ½  * BVprotein content, % + 
+ 2170 ½  *BVfat content, % + 98.6 ½ *BVlongevity, month,				    (1)

where BV corresponds to estimated breeding value derived from ss-gBLUP evaluation 
model. The Spearman correlation was calculated between KSI and the published 
Total Merit Indices of Iran, Israel and Czech Republic for auxiliary results verification 
(Sadeghi-Sefidmazgi et al., 2009, Krupová et al., 2018, Ezra and Weller, 2012).

As part of the project for genomic reference database development, we collected more 
than 7,300 genotypes of the Udmurt Holstein dairy population in 2 month. In order to 
account for all available data, we also combined phenotypes and genotypes data from 
other regions of various previous local projects. Overall, by the end of 2020 we had 
161 048 animals in the database with 17 924 milking cows and 1299 evaluated bulls 
from 5 regions of Russia.

During the data collection, Selex databases from dairy farms were received and 
processed. Mistakes, typos, duplicates, and deviations from expected values have 
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been filtered from the data. Every animal has been provided with a unique identifier. 
There were 9 farms associated with the Udmurt region; overall 15.7% of the animal 
records were filtered. For each farm, on average 2% of animal records did not pass 
the data validation. For other 4 regions about 1% were filtered. 

All the animal-parent pairs for which the genotypes were obtained were checked for 
consistency of parentage in the pedigree with parentage by genotype. In the case of 
a mismatch between the parents of an animal by pedigree and genotype, the search 
for the true parents was performed.

The obtained results are presented in table 2 and 3.

With the formed reference population of five regions, EBV and GEBV were estimated 
for both cows and bulls. The distribution of calculated reliability of 305d milk yield EBV 
and GEBV is shown in figure 1.

Figure 1. Reliability from BLUP and ss-gBLUP models of Udmurt region data.

Table 2. The number of animals with accepted and excluded dams. 
 

Genotypes in total Dam is accepted Dam is excluded True dams found 

8426 2086 (75.9%) 187 (7.9%) 114 

 
 
 
Table 3. The number of animals with accepted and excluded sires. 
 

Genotypes in total Bulls genotypes Sire is accepted Sire is excluded True sires found 

8426 23 922 (86.5%) 92 (8.6%) 91 
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Figure 2. Spearman’s correlation coefficients with foreign total merit indexes.

As expected, the result showed the larger reliability values with genomic information 
added. Considering the results of 305d milk yield prediction, the maximum reliability 
value of GEBV is 0.66 for cows and 0.93 for bulls, medium reliability value is 0.53 for 
cows and 0.58 for bulls. The lowest reliability performance both for GEBV and EBV 
is associated with low-quality phenotypic data from farm 4. Average gain in reliability 
values of ss-gBLUP are about 8%.

After the genomic evaluation process the total merit index, KSI, was implemented. 
Spearman’s correlation coefficients between KSI and Israel, Iran, Czech Republic 
Indexes are 0.94, 0.99, 0.86, respectively (Figure 2). The 305d milk yield trait has the 
biggest contribution (76%) in KSI variance, since the milk price has the greatest impact 
on Russian agro-holding economics. 

Moreover, a web service was implemented (https://app.ksitest.ru/) for local breeders. 
Ksitest web-service combined almost all features described above for each animal 
obtained database: their own information (name, farm, birth date), breeding values, 
genomic passports, total merit index, parentage verification, pedigree information. 
Genotyped animals also have results from genetic tests, such as monogenic disease 
(e.g. Bovine Leukocyte Adhesion Deficiency) or selection trait (e.g. polledness) statuses. 
As a result, web-service allows breeders:

•	 to rank animals by their genetic potential;

•	 to explore analytics (e.g. mean milk yield on the farm, dynamics of EBVs and GEBVs 
in years);

•	 to chose animals for embryo transfer or sale;

•	 analyze bull’s performance (e.g. descendants production)

•	 receive documents (e.g. genomic passports and genotyping results in Illumina Final 
Report format).

In the next year 200 bull’s genotypes and 22 500 cow’s genotypes will be produced. 
The reference database will be expanded to 3 more Russian regions. Furthermore, 
to make a more efficient KSI total merit index for the dairy farmers, calving interval, 
fertility and  conformation traits will be implemented and more economic parameters 
will be obtained by the end of 2021.
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We aimed to create the first genomic reference database in Russia and perform genomic 
evaluation collaboratively with the Ministry of Agriculture of Udmurt Republic. We 
collected and validated more than 160 thousand animals data to the ksitest database. 
Besides, as of July 2021, the database contains records from 18 farms of 8 Russian 
regions. Currently we have data on 234,582 animals in total with 23,811 milking cows 
and 1561 evaluated bulls with 8974 genotypes and 328,917 phenotypic records. 
Genomic evaluation of obtained data outperformed the pedigree based evaluation. 
In addition, we incorporated all developments to our web service. Our results imply 
that genotyping information tends to reach higher reliability of prediction and higher 
selection accuracy. Genomic selection could replace currently common selection by 
dam’s productivity in Russia and can improve accuracy for young animals without 
phenotypic information. Evaluations of new traits and more genotypes are expected 
in 2021. We expect that the accuracy of genomic evaluation will continue to improve 
with more data and these results pave the way for genomic selection implementation 
in Russia.
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At farm level the mastitis disease appearance decrease the milk production, produce 
veterinary costs and welfare issues, increase the culling rate or cause lower milk 
payment (Bastin el al., 2013, Guimarães et al., 2017). Because mastitis is associated 
with a wide range of characteristics that can be measured in milk and with recent 
advances in estimation of milk components using mid-infrared spectrometry (Soyeurt 
et al., 2009), it is now possible to have the composition of several additional milk 
components such as fatty acids, lactoferrin (Leclercq et al., 2013), minerals, negative 
energy balance, non-esterified fatty acids and beta-hydroxybutyrate or citrate (Grelet 
et al., 2015), etc. The objective of this study was to build a spectrometric tool for 
Alsace, such as MastiMIR in LKV B.W. and to work out if it is possible to determinate 
by means of the milk quality the animal health status. Furthermore, the aim was to 
evaluate the usability of farmer observations and MIR indicators for the improvement 
of early mastitis prediction. The dataset contains 303,650 spectral data from 123 herds 
between 2014 and 2018. The first trial is composed from 70% of data in calibration 
and 30% in validation, while the second trial from 70% and 30% respectively of farms 
in calibration and validation datasets. 

To identify animal variables that were positively or negatively associated with mastitis, 
the spectral data was first standardised, then pre-processed by first derivative and 
the legendre polynom model was applied for days in milk correction. For the ill class, 
spectral data with mastitis diagnosis for a given cow within -14 to +14 days was 
chosen, while for the healthy class no diagnosis data was registered. As fix effects 
were considered the sampling moment, lactation stage, and breed. For this model no 
somatic cell filter was used. The MastiMIR calibration model showed 77.7% sensitivity 
and 68.4% specificity for the final calibration model. The external validation showed 
67.1% sensitivity and 68.1% specificity. For the same period if the somatic cell SCC 
filter was done: 400,000 SCC filter for non-healthy data and 50,000 SCC filter for healthy 
data the sensitivity and specificity are increased to 85.5% and 72.7% respectively. The 
MastiMIR model provides four classes of mastitis warning such as not, moderately, 
significantly and severely endangered. The moderately endangered class is a signal 
for the farmers to keep an eye on the affected animals and contact a vet if applicable 
in order to prevent the mastitis diseases.

Keywords: mastitis, spectrometry, MIR milk spectral data, dairy cow, cow health
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The mastitis definition is well known; mastitis is an inflammation of the mammary glands 
and can be caused by more than 50 different organisms. Usually, mastitis is diagnosed 
by somatic cell number (SCC) and laboratory diagnostic methods. At farm level the 
mastitis disease appearance decreases the milk production, produces veterinary costs, 
welfare issues, and increases culling rate or causes lower milk payment. Mastitis is 
associated with a wide range of characteristics that can be measured in milk with recent 
advances in the estimation of milk components using mid-infrared (MIR) spectrometry. 

Also if a cow has mastitis, the composition of the milk will be affected and with it the 
MIR-milk-spectrum. The important message from a previous project (OptiMIR) was 
that not only the main components can be analysed with the MIR spectrometer, but 
also fatty acids (Grelet et al., 2014), minerals, lactoferrin (Soyeurt et al., 2011), beta-
hydroxybutyrate (BHB), acetate and citrates (Grelet et al., 2015), etc. Complex features 
could also be identified, for example models for ketosis (Grelet et al., 2016), energy 
deficit (McParland et al., 2011, Smith et al., 2018), energy balance (Dale et., 2019) 
and methane emissions (Dehareng et al., 2012). Nowadays working on mastitis tools 
could help farmers for the herd management and better production. 

The objective of this study was to build a spectrometric tool, such as MastiMIR in LKV 
B.W. for Alsace and to see if it is possible to determinate true the milk quality the animal 
healthy status. The aim was to evaluate the farmers observations usability and MIR 
indicators for the improvement of early mastitis prediction.

The dataset contains 303,650 spectral data from 123 herds between 2014 and 2018. 
The observations were documented by the farmers with the help of 86-part diagnostic 
keys. The gold standards to create the MastiMIR model were the mastitis observations 
together with the spectral data. The observations used for the model were: chronic, 
acute and subclinical mastitis, as well as coli mastitis. The model is based purely on 
standardized spectral data since all spectra registered at the MRO Agricultural Chamber 
Alsace level have been standardised starting from January 2012, due to the OptiMIR 
project participation. 

All data editing, modelling and calculations were done using the R statistical language 
and environment. To identify animal variables that were positively or negatively 
associated with mastitis determination, the spectral data set was first pre-processed 
by Savitzky-Golay first derivative in order to remove the offset differences between 
samples for baseline correction, before performing Legendre polynomial transformation 
based on days in milk. Then the data was submitted to logistic regression in combination 
with LASSO variable selection and regularization and 10 fold cross validation using the 
“glmnet” R package. For the non-healthy class, spectral data with mastitis diagnosis for 
a given cow within -14 to +14 days was chosen, while for healthy class no diagnosis 
data was registered. As fix effects were considered the sampling moment, lactation 
stage, breed. No somatic cell filter was used for this model. What comes after the 
mastitis diagnostic was not taken into account for modelling. For the healthy group 
only spectra which had no diagnosis associated within ±60 days were used. 

For “glmnet” model were considered as fix effects the sampling moment (with three 
variants: standard, morning and evening), lactation stage (if lactation number was 
greater than 5 it was taken as 5) and usage of breeds (milk, mix and meat) and a 212 
OptiMIR wavenumbers subset of the pre-processed spectral data. The calibration data 
set contained 303,650 spectral data from 123 herds. The first validation approach 
was based on a random split of data, 70% of data was used for calibration model 
and 30% for validation model. The second validation model was based on a lot of 8 
farms for an external validation in order to exclude animal and farm effects. These 8 

Introduction

Material and 
methods
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farms were the farms with the highest diagnosis registration rate and had to cover the 
important breeds e.g. 4 Holstein farms, 2 Brown Swiss farms and 2 Simmental farms 
from Agicultural Chamber Alsace were registered. For this two validation models the 
same data cleaning approach as for calibration model was used. Due to the external 
validation with the extreme values diagnosis cases, a third validation model is proposed 
with production data from a whole production year. Data from 1st October 2017 till 
end of September 2018 in combination with diagnosis data was aimed to verify if the 
proposal model could be afterwards used or not in production. From a research and 
statistical point of view, production data approach could show what in the reality exists 
and if the model will be working in reality.

Mastitis can only be predicted to a limited extent via the number of cells. Therefore a 
model based on spectral data, animal parameters, and mastitis observations such as 
MastiMIR has been developed. After modelling with GLMNET in R, a sensitivity (the 
percentage of sick cows that were correctly identified as having the condition) of more 
than 63% in calibration and 72% for the validation and external validation model could 
be obtained. The specificity (the percentage of healthy cows that were correctly identified 
as not having the condition) is more than 74% for calibration model and 1st validation 
model and 64% for the external validation model, 2nd validation model (Table 1).

It can be underlined that until now no information of direct use of spectral data to 
predict the mastitis treat has been found in the literature before 2017 (Dale and Werner, 
2017). Regarding the 3rd validation model with production data, it can be seen that 
the sensitivity is just 71.6% while the specificity is 66.2%. This can be explained by 
the probable presence of untreated mastitis cases, subclinical mastitis and missing 
registration of diagnosis events in the production data. 

The idea was to cover this group of data by means of a mastitis risk probability provided 
by a presumed logistic-linear relationship (S-curve) between MastiMIR probability and 
the mastitis danger. This model allowed by using different thresholds to distinguish 4 
danger/risk classes. The class limits were determined by using statistical methods such 
as cumulative probability and Cox event time analysis. The class size was negatively 
correlated with the mastitis class. It can be seen in the distributions of the MastiMIR 
and the SCC classes over the lactation week, that the mastitis class distribution has 
the shape of the lactation curve on both models. 

The MastiMIR class distribution on whole population from Agricultural Chamber Alsace 
for the year 2017 is more pronounced than SCC class. Regarding the animals with 
MastiMIR danger or risk it can be pointed out that mastitis can occur also when the 
cows have less SCC and animals with higher SCC may still have other diseases as it 
was underlined in the literature (Dale et al., 2019). There is also a difference between 
the healthy classes and moderately endangered and also significantly endangered. The 
size of the group decreases while the SCC classes with  higher mastitis risk increas. T

Table 1. MastiMIR calibration and validation statistics. 
 

MastiMIR Model Sensitivity Specificity 
Calibration 63.9% 74.1% 
1st Validation 72.4% 68.6% 
2nd Validation 64.6% 64.8% 
3rd Validation 71.6% 66.2% 
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he Cox event time analysis improved the classification. If an animal has mastitis 
observations, it can be seen earlier with the MastiMIR model than with the SCC 
class model. The transition from significantly endangered to severely endangered 
was better differentiated. The transition from healthy to moderately endangered class 
was displayed earlier. If a cow has health problems due to mastitis, it has not only a 
lower amount of milk or higher SCC but it also reacts with a change of the main milk 
components: the lactose content is negatively correlated with mastitis and the protein 
content and the fat-lactose ratio are positively correlated. A positive correlation also 
applies to the milk fine components sodium, Lactoferrin and BHB, as the literature 
has already confirmed. 

In the Agicultural Chamber Alsace, the MastiMIR Alsace model is taken into the 65 
pilot farms for testing. The criteria for the selection of pilot farms were: farms with 
advisors specializes in milk quality, also robotic farms, farms with SCC problems, farms 
with mastitis problems. Each advisor have different approachs, such as: sorting the 
parameters to understand how the algorithm works, communication with the farmer 
to understand the classification of the animals or feedback from farmers should be 
standardized in order to raise awareness among the model. Each advisor receives 
weekly emails from LKV B.W. IT center with the PDF and excel documents for each 
farm. Regarding the interpretation of the reports, each advisor works individual and 
different. 

One of the advisors is working direct with farmers the other one has another approach 
such as sending the reports and take an appoiment with the farmer later in the same 
week. Thus the farmer can be prepared and informations can be noted. It is very 
important to pursue the history of each cow with high risk and to get information from 
the farmers about those animals and to note if the cow gets mastitis or not. Moreover 
there is a need to document if an animal had abacteriological analysis (differences 
between e.g. coli (a rapid development) and staphylococcus). It is very important to 
sensitize the farmers to document also the untreated udder infections and cows with 
mild symptoms. 

Therefore it was very important to select farmers who know their animals well and 
have knowledge of mastitis. There are still a lot of questions such as how does the 
farm determine that a cow does not have mastitis (flakes, no symptoms...)? Could it 
be a subclinical cow? The Agricultural Chamber Alsace, pointed out that it is essential 
to inform the participating farms about the MastiMIR report, various milk parameters 
and their relationship. Indeed, farmers often have difficulty identifying mastitis. Some 
farmers give their respond quickly, others not, therefore it is challenging because until 
now no bacteriological analyzes have been made if mastitis is suspected. Therefore 
it is important to analyse affected cows because it is known, that coli bacteria cause a 
rapid infection. This pathogen comes from the environment not from the metabolism 
of the cow, thus the MastiMIR project may not be able to find the animal at risk. 

Furthermore there are similar markers in the spectra that could point out not just if a 
cow has mastitis, there is also cow with lameness (Bonfatii et al., 2020), but in the 
report for the MastiMIR, it can be pointed out if the index of mastitis is low and the 
cow has high SCC value, it should be check if a cow has or not lameness problems. 
Moreover, it turned out, that interaction with other diseases need to be taken into 
account, because poorly planned stable buildings, stress, hoof problems, milk fever, 
milking hygiene or feeding can be recognized in the spectral data. 
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The aim of this study is to describe the experience and the status quo on implementing 
the new Differential Somatic Cell Count (DSCC) parameter as a new service to 
milk‑testing clients of Qnetics through routine milk recording.

Milk samples from all dairy herds enrolled to milk recording in the federal state Thuringia, 
Germany, were analysed on CombiFoss 7 DC. A total number of 416,198 test days was 
available for data analysis in our study. The udder health status of cows was categorised 
into four different groups depending on SCC and DSCC results: Udder Health Group 
A – healthy, SCC <200,000 cells/ml and DSCC < 65%, B – onset of mastitis, SCC 
<200,000 cells/ml and DSCC >65%), C – (subclinical) mastitis, SCC >200,000 cells/
ml and DSCC >65%, D – chronic mastitis, SCC >200,000 cells/ml and DSCC < 65%. 
Linear mixed effect models were applied for statistical analysis of the data.

Briefly, the performance of cows in the different Udder Health Groups was investigated 
and cows in group A revealed the highest performance (e.g. milk weight, fat and 
protein). While the performance was lower in group B, it decreased significantly in 
group C. Cows in group D turned out to be evidently less productive compared to 
cows in groups A-C. The distribution of cows among the four different Udder Health 
Groups was investigated for the whole population as well as for each individual farm. 
Interestingly, the distribution varies hugely between farms, indicating and revealing 
different farm management practises.

In a next step, multiple dairy farms were selected and their farm management practises 
were further investigated. Beyond that a pilot phase, where the selected farms regularly 
receive a new udder health report based on SCC and DSCC results, was initiated. 
First feedback confirms new possibilities for udder health management and optimising 
herd health and performance based on the new udder health report. The learnings 
from the pilot phase confirm the added value of DSCC for udder health management 
and will be used to further roll out the new service.

Keywords: DSCC, udder health, milk recording.
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The company Qnetics offers various services to dairy farmers in the German federal 
state of Thuringia. Among other things, these include the organisation and execution of 
DHI testing for dairy cows, ewe, and dairy goats, milk payment analysis, and advisory 
services for herd management, dairy cow nutrition and milk quality challenges. Beyond 
that, breeding services such as raising of own bulls, sperm production and artificial 
insemination services are offered. 

A total number of 94,548 dairy cows was kept on 282 dairy farms in Thuringia in 
2020. The vast majority (98.2%) of these farms are utilising dairy herd improvement 
services on a regular basis. The average annual production per cow was at 9,978 kg 
milk, 404 kg fat, and 345 kg protein in 2020. The average herd size is at 335 cows 
and approximately 60% of all cows are kept on 25% of all farms. 

The average productive lifetime of cows is a key figure investigated every year and 
was at 2.3 lactation in 2020 and at comparable levels in previous years. Delving into 
when and why cows are culled revealed that nearly 50% of cows are culled in their first 
or second lactation and udder health challenges was the top 2 culling reason (13.8%) 
after reproduction. Given that this is critical from an economic and ethic perspective, 
CombiFoss 7 DC technology including the DSCC parameter was acquired. The 
key motivation was to be able to provide farmers with better DHI-based services for 
managing udder health, in particular earlier detection of udder health issues.

A data base consisting of 416,198 test days generated between August 2019 and 
January 2020 has been used for initial data analysis. More specifically, cows were 
categorised into four different udder health groups (UHG) depending on their actual 
SCC and DSCC test day result as follows: 

•	 A – healthy: 			   SCC <200,000 cells/ml and DSCC <65%, 

•	 B – onset of mastitis: 		 SCC <200,000 cells/ml and DSCC >65% 

•	 C – (subclinical) mastitis:	 SCC >200,000 cells/ml and DSCC >65%

•	 D – chronic mastitis:		  SCC >200,000 cells/ml and DSCC <65%

The SCC cut-off of 200,000 cells/ml used is according to IDF recommendations (IDF, 
2013). The DSCC cut-off of 65% has been identified as optimal cut-off in a study 
where the actual udder health status of cows as defined by bacteriological testing was 
available (Schwarz et al. 2020a). 

Interestingly, the analysis of the data base revealed that the dairy cow performance 
of cows differed significantly between cows in the four different udder health groups. 
These differences, in turn, indirectly confirm the interpretation of the four groups. 
Cows in group A showed the highest performance, which was to be expected as they 
are healthy based on their low SCC and low DSCC test day results. Cows in group B 
showed a significantly lower performance than those in group A, which is explainable 
based on inflammatory processes (i.e. high DSCC values) consuming energy that is 
then not available for milk production anymore. This confirms that cows in group B might 
be in the early stage of mastitis. Presences of mastitis pathogens and inflammatory 
processes has been described in such cows before (Schwarz et al., 2011a,b; Pilla et 
al., 2012; Schwarz et al., 2020a). Lower performance of cows with elevated SCC have 
been described before, but we could observe significant differences between cows in 
groups C and D. Those in group D performed significantly worse than cows in group 

Dairy farming in 
Thuringia

Udder health 
group concept 

Introduction
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Figure 1. Dairy herd improvement results of one dairy farm (random example) to 
illustrate the four different udder health groups: A – healthy, B – onset of mastitis, 
C ‑ (subclinical) mastitis, D – chronic mastitis. 

Pilot project to 
build up practical 
experience

Experiences from 
pilot phase and 
next steps 

C. Cows in group D are considered to experience chronic mastitis and it is well-know 
that such chronic infections lead to destruction of milk producing tissue explaining the 
low performance.

This study including more results from Austria, China, Estonia and Spain has been 
published elsewhere (Schwarz et al., 2020b).

Based on our data base it became evident that the distribution of cows among the four 
different UHG varied hugely between farms. We selected farms with different proportions 
of cows in the four groups and visited them to better understand management practises 
and associations with the UHG concept. At the same time, we introduced the new 
DSCC parameter and a new SCC and DSCC-based udder health report to the farms 
and invited them to join a pilot project where they would get access to the new report 
for a period of 1 year.

A total number of 11 dairy farms with 150-900 lactating cows agreed to join. Observed 
changes in terms of proportions of cows in the UHG over time where discussed with 
the herd managers and clear associations with herd management practises were 
found. Particularly cubicle management and hygiene as well as milking procedures 
and hygiene were identified as key factors. 

All of the participating dairy farms agreed at the end of the pilot phase that “the 
information provided through the new report and the arising possibilities aid in improving 
animal health and, at the same time, lead to better usage of resources and higher animal 
performance.” Versatile application of the new udder health report was observed as 
can be seen based on the following quote of herd manager: “..we already introduced 

 
 
Figure 1. Dairy herd improvement results of one dairy farm (random example) 
to illustrate the four different udder health groups: A – healthy, B – onset of 
mastitis, C – (subclinical) mastitis, D – chronic mastitis.  
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improvements to have cleaner and drier cubicles end of 2019 and could see the positive 
effects based on the new report in detail, praise our staff and motivate them for keeping 
up the extra effort. All this resulted in less antibiotic treatments, less wasted milk, 
better animal health and performance.” Herd manager. The positive developments in 
terms of udder health on this farm are illustrated in Figure 2. Another herd manager 
reported: “..we use the report two fold: on herd level and on individual cow level. The 
report helped us to optimise the management of our cubicles and maintain a high level 
of hygiene and comfort. Daily production per cow and the amount of milk delivered 
increased. We further use the report to better monitor individual cows, mostly those 
in UHG B and D. Fresh and late-lactating cows are of particular interest. Cows with 
stable udder health falling in UHG A before dry-off are dried off without antibiotics.” The 
manager of a 170 cow herd emphasized: “Particularly cows in group B are of interest 
for us because here mastitis can be spotted at a very early stage.”

In a next step, a newly developed online tool (vit verden) for presenting the udder health 
report based on SCC and DSCC information is being trialled. Subsequently, the tool 
will be rolled out to all farms participating in DHI programmes. 

Mastitis is still a huge challenge on dairy farms and is one of the key reasons for 
premature culling of dairy cows. Our pilot project on working with a new SCC and 
DSCC based udder health report revealed that it helps dairy farmers to better manage 
udder health in their herds. Improvements in terms of dairy cow health, welfare, and 
performance and less antibiotic treatments were already seen during the pilot project. 
In the long run, improvements regarding cow longevity and milk quality in general can 
also be expected. 

Figure 2. Development of proportions of cows in each of the four udder health groups 
(A, B, C, D) over the 12 months pilot phase in a herd with 850 lactating cows.

Conclusions

 

 
 
Figure 2. Development of proportions of cows in each of the four udder health 
groups (A, B, C, D) over the 12 months pilot phase in a herd with 850 lactating 
cows. 
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