

Selection tools to benefit from international cooperation in small ruminants: a comprehensive work package of the SMARTER project

J.M. Astruc, L. Brito, B. Bapst, G. Bruni, M. Burke, G. Ciappesoni, J. Conington, H. Larroque, A. O'Brien, J. Posta, C. Moreno-Romieux, D. Berry

ICAR 2021: Leeuwarden, the Netherlands, Virtual session, 29 April 2021

SMARTER = SMAll RuminanTs breeding for Efficiency and Resilience

2018 - 2022 (2023)

Coordination: INRAE Toulouse

Partnership includes ICAR

WP6 "Practical Selection Tools to Benefit from International Cooperation"

Objective: contribute to faster genetic progress for resilience and efficiency traits in sheep and goats through improved international cooperation

HARMONISATION: phenotypes, genotypes, pedigree

INTERNATIONAL EVALUATION: genetic, genomic

PRACTICALITIES of international evaluations

ASSESS BENEFIT: modelled benefit of harmonization of phenotyping & int'l evaluation on long-term genetic gain

Description of breeding programs in partners and evaluation systems in partners

Sharing agreements for pooling data

File format for exchanging phenotypes, genotypes, pedigree

research on allele frequency across country x breeds

Codification of **breeds**

Listed novel traits
and their definition

File format for pedigree, phenotypes, genotypes, parameters, EBVs

Structure of PEDIGREE File exchanged in SMARTER

1. Name= pedigree_species_production_country_version_date.txt

length

1MDD

Comment

Interbull format

Interbull format Interbull format

Useless if birth

date known

model
Environmental effects

recoded (n times)

I Hame Praiging_species_pre							
No	Data	Type &					
1	International ID animal	(1					
2 3 4	International ID sire	(1					
3	International ID dam	(1					
4	Birth date	YYYYN					
5	Year of birth	YY					
6	Name of animal	Fre					
7	Country sending data	/1					
8	National ID animal	Free the					
9	Animal_ID_alias1						
10	Animal_ID_alias2						
11	Animal_ID_alias3	-					
12	National ID sire	Free -					
13	Sire_ID_alias1						
14 Sire_ID_alias2							
15	Sire_ID_alias3	-					
16	16 National ID dam						
17	17 Dam_ID_alias1						
18	Dam_ID_alias2						
19	Dam_ID_alias3						

Structure of PHENOTYPE File exchanged in SMARTER

1. Name= phenotype_species_production_country_version_date.txt

Example

Please see below

20120425

2012

- [Ν°	Data	Type & length	Comment	Example		
- [1	Trait	(1)		MYI		
- [2	Breed of evaluation	(2)		MTR		
	3	Country sending data	(3)		FRA		
- [4	International animal ID	(4)	Interbull format			
- [5	Herd/flock	Free (as it is in the	Official ID in the	FR64124012		
- [country)	country of origin			
- [6	Dependent variable	Free		345		
	7	Statistical weight of the	(5)		1		
- [_ /	performance	0 to 1		1		
- [Number (n) of					
-	8	environmental effects			4		
-	0	included in the national			CENCTYPE		

Structure of GENOTYPE File exchanged in SMARTER A Name-genotype species production country version date.txt

(6)	(Name=genotype_ <i>species_production_country_version_date</i> .txt					
Free *	No	Data	Type & length	Comment	Example		
	1	International animal ID	(1)	Interbull format			
	2	SNP name	International name		OAR1_110509088.1		
	3	Allele A/B	Char.2		AB		

Survey on programs and genetic/genomic evaluation

Session 61. SMARTER: small ruminants breeding for efficiency and resilience

Chair: Conington / Moreno

Theatre Session 61

Book of Abstracts page

9:15 Genetic evaluation systems and breeding programs in sheep and goats: an international perspective L.F. Brito, D. Berry, H. Larroque, F.S. Schenkel, G. Ciappesoni, A. O'Brien, F. Tortereau, E. Ugarte, I. Palhiere, B. Bapst, J. Jakobsen, G. Antonakos, A. Kominakis, V. Clement, G. Bruni, V. Loywyck, E. Massender, H.R. Oliveira, J. Posta and J.M. Astruc

Exchanged genomic data and completed research on allele frequency across country x breeds

Session 61. SMARTER: small ruminants breeding for efficiency and resilience

Chair: Conington / Moreno

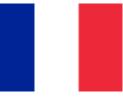
Theatre Session 61

Book of Abstracts page

61.18 Comparison of sheep genotype metrics across breeds and countries A.C. O'Brien, J.M. Astruc, A. Tolkamp and D.P. Berry

606,000 52,000 V1 52,000 V2 15,000 54,000 15,000

Identify informative SNPs across multiple types, breeds, and countries

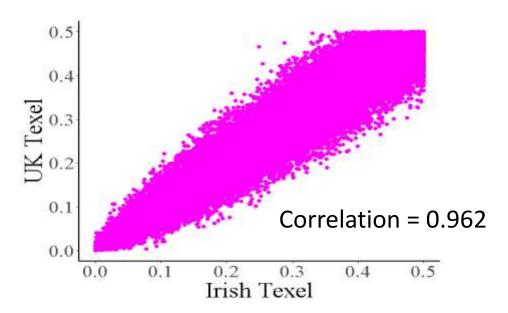


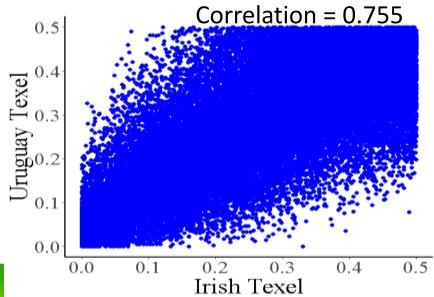
Black-Faced

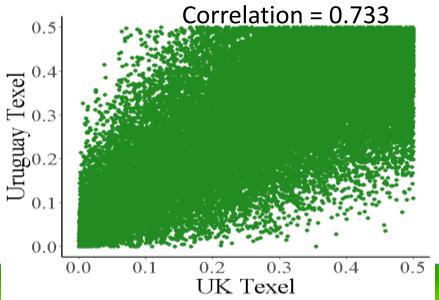
Manech

Basco-

Béarnaise







Across-country evaluation

3 case studies: meat sheep, dairy sheep, dairy goats

- Documenting issues (ID, phenotypes)
- Genetic correlations across country
- Run animal model BLUP / SSGBLUP from raw phenotypes.
- Multi-trait analysis

Framework developed to quantify the benefit of international sharing of germplasm. Case-study Ireland & NZ. To be used in other case-studies

> Fetherstone et al. Genet Sel Evol _ ######################### https://doi.org/10.1186/s12711-020-00594-y

RESEARCH ARTICLE

Open Access

Genetic and economic benefits of foreign sire contributions to a domestic sheep industry; including an Ireland-New Zealand case study

Across-country evaluation

Illustration of **phenotype issue** (goat case). Heterogeneous phenotypes for the same trait (eg. Dairy traits)

- Canada:
 - Test-day data (milk production)
- France:
 - Lactation data (milk production)
- Switzerland:
 - Lactation data cut in two parts (1-100 days and 101-220 days)
- Italy:
 - Lactation data but precorrected (milk production)

Main output regarding ICAR community

- ✓ Guidelines for efficiency and resilience traits in small ruminants
- ✓ Creating an international initiative and preparing necessary procedures to facilitate, encourage and motivate cooperation in international evaluations in small ruminants
 - ~INTERRAM / INTERBUCK
 - Zootechnical Reference Centre for Small Ruminants

Creating an international initiative for across country evaluation in small ruminants

- Technical lessons from the case-studies
 - Way to address the issues
 - Strategy for across country evaluation
 - Assessing the genetic links between countries
- OPPORTUNITIES and RISKS of international evaluation in small ruminants
 - Survey within SMARTER partners
 - Complete and (very) interesting panel of arguments / opinions / comments
 - Survey to be extended to other stakeholders

INT'L EVALUATION: OPPORTUNITIES & RISKS

OPPORTUNITIES

Increase the rate of genetic gain in many countries

More rapidly address some of the **health**, **welfare**, **disease and environmental** impact challenges

Get EBVs from abroad on the domestic scale

Fair exchanges across countries

International collaboration and sharing of knowledge. **Networking** between stakeholders

Harmonisation of phenotype recording

INT'L EVALUATION: OPPORTUNITIES & RISKS

RISKS

Lack of genetic links between countries What if GxE?

Promote a few breeds of wide commercial applicability v. local breeds

Unbalanced benefits. Risk that sale of genetics would only be one way

Too expensive and time consuming for small ruminant sector (cost-benefit balance?)

Loss of independence on evaluation => maintaining national research groups needed / preferred

"There are risks, but the risks can be mitigated if this is recognised up front" => Work on how to mitigate the risk

SMARTER PARTNERS

Thank you for your attention

www.smarterproject.eu

