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Introduction
Digital farming relies on data
◦ Environment

◦ Production

◦ Health

◦ Welfare 

◦ Genomics 

◦ Management

This paves the way for the use of Artificial Intelligence for precision and efficacity

2

A. Awashti, A. Awashti, D. Riordan, J. Walsh. Non-Invasive Sensor Technology 

for the Development of a Dairy Cattle Health Monitoring Sys, 2016.



Introduction
Use of Artificial Intelligence and Machine Learning introduces risks to :

Farming sector needs to improve cyber security
◦ U.S. Government Accountability Office (2019)

◦ Survey conducted by Geil et al. (2018)

Security

Privacy
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Outline

1.Data chain

2.Risk vectors

3.Adversary model

I - Security model for digital farming

1.Privacy of data and model

2.Integrity of model and predictions

3.Means of mitigation

II - Risks to machine learning
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Machine learning flow

1. Data collected : raw data

2. Training dataset: pre-processed data

3. Training: design predictive model

4. Model: query and make predictions
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I - Security model of digital farming
1. Data chain
Data chain describes the data life cycle between resources and actors. Wolfert et al. (2017)

Resources

◦ Training dataset: confidentiality

◦ Trained model: confidentiality, integrity

◦ Predictions: integrity

Actors
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I - Security model of digital farming
2. Risk vectors
Data processors have two interfaces that are the data collection (upstream) and model 
predictions (downstream)

Upstream

Downstream
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I - Security model of digital farming
3. Adversary model

Goals

◦ Financial gain: model 
privacy

◦ Information leak: training 
dataset privacy

◦ Disruption: model and 
prediction integrity

Capabilities

◦ Insider: specific knowledge

◦ Outsider: large cyber 
resources and advanced skills
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II - Risks to ML in digital farming
1. Confidentiality of data and model
Membership inference
◦ Determine if a data point is part of the training set
◦ Ex: On hospital discharge dataset, Shokri et al. (2017)

Model inversion
◦ Gain knowledge about the training dataset
◦ Ex: Reconstruct unknown features of patient with warfarin dosing system, Fredrikson et al. 

(2014)

Model theft
◦ Steal the model parameters or extract model behavior
◦ Ex: Steal model for vendor (Machine Learning as a Service), Tramèr et al. (2016)
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II - Risks to ML in digital farming
2. Integrity of model and predictions
Data poisoning
◦ Inject malicious data point in training set to compromise the model

◦ Ex: Backdoor on authentication system, Chen et al. (2017)

Adversarial example
◦ Craft malicious request to compromise the prediction

◦ Ex: Evade malware detection system, Al-Dujaili et al. (2018)

Adversarial example on InceptionV3 classifier
Retrieved from https://github.com/anishathalye/obfuscated-
gradients/blob/master/example.png
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II - Risks to ML in digital farming
3. Means of mitigation
Differential privacy
◦ Increase privacy of each element in dataset by adding small noise to without affecting utility

◦ Membership inference, model inversion

Query auditing
◦ Analyse queries or filter results to prevent attacks

◦ Membership inference, model inversion

Robust model
◦ Use training techniques that increase model resilience

◦ Data poisoning, adversarial example
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Conclusion
Digital farming must improve cyber security

ML research exposes new practical risks to security and privacy

I. We developed a security model for digital farming

II. We investigated risk to machine learning and practical means of mitigation

Opportunity to increase resilience of digital farming
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