

MACHINE-LEARNING BASED PREDICTION OF TEST DAY MILK YIELD USING HISTORICAL DATA OF THE PREVIOUS LACTATION.

PhD Researcher: Matthieu Salamone

INTRODUCTION

THE INITIATION OF THE LACTATION

THE TRANSITION PERIOD

- Animal variation to response during challenge period
- Identification of at-risk animals: crucial
 - Animal welfare
 - Economic
 - Efficiency ~ ecological footprint

RESEARCH QUESTION

- Data driven identification → Prediction of unperturbed production → Realised production
- Capacity to predict production in the transition period
 - Current models (Wood, Wilmink,...) → Possibly influenced by transition diseases
 - Usage of historic test day data → develop & validate a new predictive model

MATERIAL & METHODS

THE INPUT DATA

- Data Source →
 - Test-Day (TD) records, calving dates, breeding dates and dry-off dates, Lactation Curve Parameters (MilkBot):
 - 102 herds
 - 32 530 Animals (Multiparous)
 - 54 082 Lactation pairs

DATA SPLICING

Dataset

80 % - Prediction set

20 % - Test set

- Splicing at Animal Level
 - Animal data either inPrediction or in Test Set
 - Reduces Possible bias in Performance evaluations

FEATURE SET

- Difference in collection ease and Quality standards -> Split feature set
- Working with 3 features set
 - = Evaluation of added benefit more feature

PRODUCTION

PRODUCTION HERD

GHENT UNIVERSITY

FULL

PRODUCTION

DIM TD1_{X+1} DIM TD1_x DIM TD2_x DIM TD3_x DIM TD4_x DIM TD5_x DIM TD6_x DIM TD7_x DIM TD8_X

kg TD1_x

kg TD2_x

kg TD3_x kg TD4_X

kg TD5_x

kg TD6_x

kg TD7_X

kg TD8_x

M21

M75

M305

Milk Minimum

Milk Maximum

Season

Season_{X+1}

Parity number

REPRODUCTION

Age At First Calving

Calving Interval

Days Dry

Days Open

Days In Milk

∆ Herd Age at First Calving

∆ Herd Calving Interval

∆ Herd Days Dry

∆ Herd Days Open

Δ Herd Days In Milk

HERD

Δ Herd M21

△ Herd M75

△ Herd M305

∆ Herd Milk Minimum

∆ Herd Milk Maximum

THE MACHINE LEARNING ALGORITHM

- Random Forest Regression (RF)
 - Creates set of decision trees
 - Parameters of the model:
 - Depth
 - # of trees

HYPERPARAMETER TUNING

- Grid search Hyperparameters=
 - Depth = 5, 10, 15, 20, 25
 - # Trees = 5, 25, 125, 250, 500
- 5 fold cross validation → Optimal set = set with no significant difference with best performing set

FINAL MODELS NEXTMILK

- Train final set of models → <u>nextMILK</u> models :
 - The full training data set
 - Optimal set of hyperparameters
 - -For each Feature Set

BENCHMARK MODELS

- Novel methodology
 - Evaluate our models
 - Performance of the models ↔
 Complexity
 - Investigate complexity
 - Simpler models ↔ Performance
 - Significant difference?

BENCHMARK I - HERD

 $MILKP_{N+1} = MILKP_N * (1 + \%difference_{Herd(N \rightarrow N+1)})$

BENCHMARK II - ANIMAL

 $MILKP_{N+1} = \widehat{MILKP_{N+1}} * (1 + \%difference_{Animal \rightarrow Herd(N)})$

- $\%difference_{Animal \rightarrow Herd(N)}$ calculated over timeframes 0d - 75d and 0d - 305d
- Corrected for DIM

ANALYSIS OF BENCHMARK

- Predictions on test set of <u>nextMILK</u>
 - |Residuals| → ANOVA → post-hoc, one-sided paired t-test
- Performance metrics RMSE, R², MAE

RESULTS & DISCUSSION

HYPERPARAMETER TUNING

Optimal Set:

• FULL: 125 trees, 25 deep

• PRODUCITON HERD:

250 trees, 25 deep

• PRODUCTION:

250 trees, 25 deep

FINAL MODELS: NEXTMILK

- Calculated on Test Set: 9 903 lacations

Model performance indicator:

- Root Mean Squared Error
- Mean Absolute Error
- $-R^2$

Model	RMSE	MAE	R ²
nextMILK - FULL	5.79	4.36	0.56
nextMILK - PRODUCTION HER	RD 6.01	4.53	0.52
nextMILK - PRODUCTION	6.03	4.52	0.52

BENCHMARK ANALYSIS

Statistical analysis:

 Significant difference between models

ANOVA: P-value < 0.001

- All benchmark models have significantly higher residuals
- No Significant difference between nextMILK models.

PERFORMANCE METRICS

Model	RMSE	MAE	R ²
Benchmark I – HERD - 75	7.09	4.55	0.33
Benchmark I – HERD - 305	7.51	4.84	0.16
Benchmark II – ANIMAL -75	7.00	4.53	0.35
Benchmark II – ANIMAL -305	7.09	4.54	0.34
nextMILK - FULL	5.79	4.36	0.56
nextMILK – PRODUCTION HERD	6.01	4.53	0.52
nextMILK - PRODUCTION	6.03	4.52	0.52

CONCLUSION

- nextMILK models
 show potential in predicting production in next lactation
- Further validation necessary → Data driven identification tool

Matthieu Salamone PhD Student

DEPARTMENT OF REPRODUCTION, OBSTETRICS AND HERD HEALTH

E matthieu.salamone@ugent.be

T +32 9 264 75 62

f Universiteit Gent

in Ghent University

www.ugent.be

