Identification of chronic stress biomarkers in dairy cows

C. Grelet, V. Vanden Dries, J. Leblois, J. Wavreille, L. Mirabito, H. Soyeurt, S. Franceschini, N. Gengler, HappyMoo consortium, & F. Dehareng

Walloon Agricultural Research Center (CRA-W), Belgium;
Elevéo asbl by awé groupe, Belgium
French Livestock Institute (IDELE), France
University of Liège, Gembloux Agro-Bio Tech (ULiège-GxABT), Belgium

ICAR welfare workshop 2022
HappyMoo project

Partnership: farmers organizations (DHI) &

To develop monitoring tools for welfare of individual dairy cows.

→ alerts about the freedom from disease, hunger and stress.
Stress workshop: Brainstorming by experts on stress and its indicators

Outputs:
✓ Chronic stress is of major interest
✓ No consensus on biomarkers
Chronic stress

“stress is the non-specific response of the body to any demand made upon it” (Selye, 1976)

- susceptibility to metabolic, inflammatory and infectious diseases (Moberg et al., 1980; Romero, 2004).
- fertility troubles (Dobson and Smith, 2000; Walker et al., 2008)
- growth disturbances (Elsasser et al., 1995)
- weight (Mormède et al., 2007)
- milk production (Tallo-Parra et al., 2018)

- production and economics of farms,
- welfare of cows
- societal perception of dairy production

Figure of General adaption syndrome (from A.C. Brown, C.I. Waslien, in Encyclopedia of Food Sciences and Nutrition (Second Edition), 2003)
Chronic stress

cortisol levels in blood (Mormède et al., 2007)

Biomarkers of chronic stress???

- hair cortisol
- hearth rate variability
- glycated protein (fructosamine)
- β-endorphin
- lymphocyte profile
- thyroid hormones
- avoidance distance
- activity
- rumination

Figure of General adaptation syndrome (from A.C. Brown, C.I. Waslien, in Encyclopedia of Food Sciences and Nutrition (Second Edition), 2003)
Objective

Induce 4 week stress through
• severe overstocking
• restricted access to feed
• punctual unusual events

Evaluate and compare potential chronic stress biomarkers

Protocol was approved by the ethical commission of Liège University. In accordance with the EU Directive 2010/63/EU for animal experiments.
Stress group (severe overstocking for 4 weeks)

- 15 cows
- < 5 m²/cow
- 7 places at feed bunk
Control group
15 cows
>10 m² per cow
more feed bunks than cows
Experiment (punctual unusual events)
Global measures
- MY
- SCC
- milk composition
- weight
- BCS
- injuries, heat...

Behaviour
- observations
- avoidance distance
- rumination
- activity

Heart monitoring

Blood (Glucose, Fructosamin, T4, \(\beta\)-endorphine, leucocytes)

Saliva (cortisol)

Hair (cortisol)
Experiment

Start of stress, Separation of cows

Week 0

Week 1

Week 2

Week 3

Week 4

Week 5

End of stress, Grouping of both groups

All cows together

Stress group

Control group

Additional
- Behavior observations
- Saliva & blood sampling, weight & BCS recording, heart monitoring
- Hair sampling
- Milk sampling

Milk sampling
Data treatment

Week averages

Linear mixed repeated models (PROC MIXED procedure of SAS) with random effect of cow being REPEATED along the weeks:

\[Y_{ijklmn} = \mu + \text{group}_i + \text{week}_j + \text{group}_i \times \text{week}_j + \text{cow}_k + e_{ijklmn} \]

Objective: highlight biomarkers having a different level in week 4 (but similar in week 0)

\[\rightarrow \text{level modification due to stress induction.} \]
Results – production variables

Milk Yield
- no difference between groups

Weight

BCS

Milk Yield 24h

Milk Loss since week 0

(*) P ≤ 0.1
* P ≤ 0.05
** P ≤ 0.01
*** P ≤ 0.001
Results - behaviour

Heterogeneity of activity (SD)

- Week 0: Control: 0.08, Stress: 0.06
- Week 1: Control: 0.06, Stress: 0.07
- Week 2: Control: 0.04, Stress: 0.05
- Week 3: Control: 0.03, Stress: 0.04
- Week 4: Control: 0.02, Stress: 0.03

Rumination

- Week 0: Control: 45, Stress: 50
- Week 1: Control: 48, Stress: 55
- Week 2: Control: 50, Stress: 50
- Week 3: Control: 52, Stress: 55
- Week 4: Control: 54, Stress: 56

Chasing/Head-butt

- Week 0: Control: 0.02, Stress: 0.02
- Week 1: Control: 0.01, Stress: 0.01
- Week 2: Control: 0.01, Stress: 0.01
- Week 3: Control: 0.02, Stress: 0.02
- Week 4: Control: 0.01, Stress: 0.02

Activity (min/2 hours)
- No difference between groups

Rumination SD (min/2 hour)

Human fear distance (cm)

Grooming (obs/hour)

(*) P ≤ 0.1
* P ≤ 0.05
** P ≤ 0.01
*** P ≤ 0.001
Results – heart rate

Hearth rate

<table>
<thead>
<tr>
<th>Week</th>
<th>Control</th>
<th>Stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>4</td>
<td>80</td>
<td>80</td>
</tr>
</tbody>
</table>

RMSSD (HR variability)

<table>
<thead>
<tr>
<th>Week</th>
<th>Control</th>
<th>Stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

(*) P ≤ 0.1
* P ≤ 0.05
** P ≤ 0.01
*** P ≤ 0.001
Results – biochemical and immune biomarkers

- Blood β-endorphin (pg/ml)
- Blood T4 (µg/L)
- Salivary cortisol (µg/dL)
- Leucocyte Profile

No difference between groups

Blood Fructosamine

<table>
<thead>
<tr>
<th>Week 0</th>
<th>Week 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>232 µmol/l</td>
<td>246 µmol/l</td>
</tr>
</tbody>
</table>

Hair cortisol

<table>
<thead>
<tr>
<th>Week 0</th>
<th>Week 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 pg/mg</td>
<td>70 pg/mg</td>
</tr>
</tbody>
</table>

(* P ≤ 0.1
* P ≤ 0.05
** P ≤ 0.01
*** P ≤ 0.001
Conclusions

• Effects on activity, rumination and chasing/head-butt: effect of overstocking, competition and adaptation of animals

• Milk Loss: efficient alert system to detect troubles (but not specific)

• Heart rate: relevant biomarker (but tedious and complex)

• Blood fructosamine: interesting biomarker (but not specific, nutrition and energy balance)

✓ Hair cortisol
Next steps

• Analysis of milk composition data
• Duplication of the experiment (april 2021) in France
• Selection of 2 biomarkers
• Large scale sampling for assessment of stress
SAVE THE DATE
27 > 29/04/2022
in Namur, Belgium

DAIR’INNOV congress
Innovations to benefit cow welfare and dairy farming sustainability

Thanks for your interest!
c.grelet@cra.wallonie.be

www.dairinnov.eu