Form BEEF

DESCRIPTION OF BEEF NATIONAL GENETIC EVALUATION SYSTEM

Country (or countries) Switzerland

Trait name: Weaning weight

DATA COLLECTION

<table>
<thead>
<tr>
<th>Breed(s)</th>
<th>Angus, Aubrac, Braunvieh, Charolais, Limousin, Simmental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trait definition</td>
<td>Effective weaning weight</td>
</tr>
<tr>
<td></td>
<td>Birth weight (auxiliary trait)</td>
</tr>
<tr>
<td>Method and frequency of measurement</td>
<td>One weaning weighing with a scale occurs between 90 and 320 days. Calves with 2 weaning weighings get their second weight used for EBV.</td>
</tr>
<tr>
<td>Who does the performance recording?</td>
<td>Experts of Swiss Beef Cattle</td>
</tr>
<tr>
<td>Method of collecting data</td>
<td>The weaning weight is recorded by Swiss Beef Cattle in the database.</td>
</tr>
<tr>
<td>Which animals get recorded?</td>
<td>Purebred animals registered by Swiss Beef Cattle</td>
</tr>
<tr>
<td>Is birthday recorded?</td>
<td>Yes</td>
</tr>
<tr>
<td>Is day of recording available?</td>
<td>Yes</td>
</tr>
<tr>
<td>Are the data adjusted and/or selected?</td>
<td>No</td>
</tr>
<tr>
<td>Time period for inclusion of records</td>
<td>Since 1990</td>
</tr>
</tbody>
</table>
| Criteria (data edits) for inclusion of records | 10 kg > birth weight < 80 kg
0.3 kg/day < daily gain < 2.5 kg/day
90 <= weaning age in days <= 320
birth and weaning weight available
birth and weaning herds available
dam and her age by calving available
apl grazing information available
Number observation per breed > 2500
Number observation per herd > 10
Number observation per herd*year > 5 |
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is embryo transfer applied?</td>
<td>The technique is rarely applied. The performance data of ET animals are included. ET is appended to the animal’s name. The recipient mother ID is recorded.</td>
</tr>
<tr>
<td>How are ET animals been identified?</td>
<td></td>
</tr>
<tr>
<td>Is recipient mother ID recorded?</td>
<td></td>
</tr>
<tr>
<td>How do you treat incomplete data?</td>
<td>If an animal didn’t have an effective weaning weight, then this animal is deleted.</td>
</tr>
</tbody>
</table>

MODEL

- **Model used for genetic evaluation**
 - 2 traits multivariate BLUP animal model with direct and maternal effects across breeds. Maternal effect is only for weaning weight.

- **Environmental effects**
 - (F): sex, year*month, alpine farming.
 - (R): herd*year, animal, permanent environment, dam, residual.
 - Covariate: animal age, dam age, linear and quadratic.
 - Only for weaning weight

- **Use of genetic groups and relationships**
 - Genetic group for birth year, country, breed, selection path.

- **Genetic parameters in the model**
 - Appendix I BEEF

- **Adjustment for heterogeneous variance in evaluation model**
 - No

- **System validation**
 - Several data quality checks by Qualitas and Swiss beef cattle at different stages of the procedure, correlation among the previous and the current evaluation.

- **Definition of genetic reference base**
 - Rolling base includes sires aged of 3 to 8 years old prior to current evaluation. Adjusted every year.

- **Assessment of index quality**
 - Reliabilities are computed by apax99s.

PUBLICATION

- **Expression of genetic evaluations**
 - For direct genetic effect, the weaning weight direct is called AGD and for maternal genetic effect, the weaning weight maternal is called AGM.
 - EBV standardized using $\text{EBV standardized using } \frac{\text{Raw EBV - Base}}{\sigma} * 12 + 100$, where σ is the genetic standard deviation and Base is the breeding value’s mean of the rolling base.

- **Criteria per official publication of evaluations**
 - EBVs are publishable for all animals included in the evaluation that belong to the breeds mentioned above.

- **Number of evaluations / publications per year**
 - 2

- **Anticipated changes in the near future**
 - Key reference on methodology applied
Key organization:
Contact person, address, phone, fax, e-mail, website

Evaluation Center:
Qualitas AG
Chamerstrasse 56, CH-6300 Zug, Switzerland
Phone: +41 (0)41 768 92 60
e-mail: sophie.kunz@qualitasag.ch
Internet: http://www.qualitasag.ch

EBV’s published by herdbook organisation:
Swiss Beef Cattle
Stapferstrasse 2, CH-5201 Brugg
Phone: +41 (0)56 462 33 54
e-mail: svenja.strasser@mutterkuh.ch
http://mutterkuh.ch/en/

1) Use Appendix II BEEF for sample ID of ET animals
2a) Use abbreviation listed in the attached list of abbreviation to define the type of model.
2b) Use abbreviation for most common effects as listed in the attached list of abbreviation indicating, also, if the effect is treated as random (R) or fixed (F).
3) Use Appendix I BEEF for heritability/genetic variance estimates.
Parameters used in genetic evaluation

<table>
<thead>
<tr>
<th>Trait(1)</th>
<th>Definition</th>
<th>h_d^2</th>
<th>h_m^2</th>
<th>$r_{g(d,m)}$</th>
<th>c^2</th>
<th>σ_p^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>WW</td>
<td>Weaning weight</td>
<td>0.31</td>
<td>0.08</td>
<td>-0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BW</td>
<td>Birth weight</td>
<td>0.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

h_d^2: direct heritability; h_m^2: maternal heritability; $r_{g(d,m)}$: genetic correlation between direct and maternal effects; c^2: repeatability of (maternal) permanent environmental effects; σ_p^2: phenotypic variance.

1) If you have more than one trait provide the correlations between traits.

GG = Birth weight
AGD = Weaning weight direct
AGM = Weaning weight maternal

<table>
<thead>
<tr>
<th>h^2 diagonal, r_o offdiagonal</th>
<th>GG</th>
<th>AGD</th>
<th>AGM</th>
</tr>
</thead>
<tbody>
<tr>
<td>GG</td>
<td>0.33</td>
<td>0.43</td>
<td>0.12</td>
</tr>
<tr>
<td>AGD</td>
<td>0.31</td>
<td>-0.25</td>
<td></td>
</tr>
<tr>
<td>AGM</td>
<td></td>
<td>0.08</td>
<td></td>
</tr>
</tbody>
</table>
Sample of ET animal IDs

Country:
Main trait group:
Breed:

ET animal ID

