Progress with Reduction in Antimicrobial Drug Use in Dutch Dairy Cattle

Harrie van den Bijgaart
Auckland, 9 February 2018
Take home message

‘The gain outweighs the pain’
Drivers for reduction

- Combatting antimicrobial resistance in human health care and animal health care
- Reducing risk of veterinary drugs in food
Actors

• Government (Departments of Agriculture & Health)
• Animal production sectors
• Veterinarians
Developments 2007 - 2010

- 2008: Public-private convenant
- 2010: Target setting for reduction in antimicrobial drug use as compared to 2009
 - -20% by 2011
 - -50% by 2013
 - -70% by 2015
- 2010: Establishment of NL Veterinary Medicine Institute (SDa)
 ➔ Registration and benchmarking
Developments since 2011

• 2011: Advice of Public Health Council on antimicrobial use in animal husbandry

• 2012: Preventive use of antimicrobials prohibited

• 2012: New formulary and guidelines for vets (1st, 2nd, 3rd choice substances)
Obligations for farmers and vets

- On-farm availability of
 - Farm health plan
 - Animal treatment plan
 - Prepared by vet and farmer
 - Annual evaluation

- All treatments in national registration system

- Restrictions on critical substances (<0,1 DDDA)
Guidelines on antimicrobial use at dry-off of cows

Figure A1. Flowchart explaining the guideline on the use of antimicrobials at dry-off in dairy cattle. Adapted from the Royal Dutch Veterinary Association (KNMvD, 2014). SCC = the SCC of the last milk recording that occurred ≤6 wk before dry-off.

Effects of reduced intramammary antimicrobial use during the dry period on udder health in Dutch dairy herds

A. Vanhoudt,*† K. van Hees-Huijps,‡ A. T. M. van Kneegsel,‡ O. C. Sampimon,§ J. C. M. Vernooij,* M. Nielen,* and T. van Werven*#

*Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, 3584 CL, Utrecht, the Netherlands
†Department of Veterinary Microbiology and Immunology, Utrecht University, 3584 CL, Utrecht, the Netherlands
‡Adaptation Physiology Group, Department of Animal Sciences, Wageningen University and Research, PO Box 338, 6700 AH, Wageningen, the Netherlands
§Zoetis B.V., 2909 LD, Capelle a/d IJssel, the Netherlands
#University Farm Animal Practice, 3451 LZ, Hanneelen, the Netherlands
Definitions

• Defined Daily Dose Animal (DDDA):
 • Treated kg/average kg present
 • Expressed in DDDA/year
 (ESVAC EMA – London)
Development in sales of antimicrobials in kg of active substances for NL livestock (source: FIDIN)

-64% since 2009
Development in antimicrobial use per sector in DDDA for NL livestock (source: LEI, SDa)

Turkey
Veal: -37%
Broilers: - 57%
Pigs: - 56%
Dairy cattle: - 48%
Use of 1st, 2nd, 3rd choice antimicrobials with dairy cattle

Based on DDDA

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1st choice</td>
<td>47.1</td>
<td>61.2</td>
<td>72.6</td>
<td>73.1</td>
<td>74.1</td>
</tr>
<tr>
<td>2nd choice</td>
<td>51.5</td>
<td>38.6</td>
<td>27.3</td>
<td>26.8</td>
<td>25.8</td>
</tr>
<tr>
<td>3rd choice</td>
<td>1.4</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Proportion of dairy cattle farms in benchmark zones

<table>
<thead>
<tr>
<th>Zone Type</th>
<th>DDDA<sub>F</sub></th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target zone</td>
<td>< 4</td>
<td>56</td>
<td>55</td>
<td>91</td>
<td>93</td>
<td>94</td>
</tr>
<tr>
<td>Signalling zone</td>
<td>4 - 6</td>
<td>40</td>
<td>42</td>
<td>8</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Action zone</td>
<td>> 6</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

For more data see www.autoriteitdiergeneesmiddelen.nl
Also some to the negative....

- % herds with more than 25% new infections after calving has increased from 6.5 to 8.5%
- Transition period requires attention

PhD Thesis Christiaan Scherpenzeel, 2017
Average NL herd bulk milk somatic cell count for cows
Arithmetic mean of single values

![Graph showing the average somatic cell count from 2005 to 2017. The count decreases from around 200 cells/mL in 2005 to below 150 cells/mL in 2017.]
Penalizations in inhibitor testing on NL herd bulk milk
Next steps

• Specific targets per sector (poultry, pigs, veal, dairy cattle)
• No regulatory enforcement but providing tools to those lagging behind
• Focus on:
 • Housing system/environment
 • Incoming cattle
 • Feed (don’t feed contaminated milk to calves!)
 • Milking (equipment/hygiene)
 • Management

• Dairy:
 • More robust animals
 • Selective dry-off
Conclusions

• Successful reduction of antimicrobial use in Dutch dairy cattle
• Parallel improvement in udder health management
• Limited negative consequences

→ ‘The gain outweighs the pain’
Veterinary motto...

Use as little as possible....

....and as much as necessary
Quality in food safety

Thank you for your attention!