INFORMATION FROM AUTOMATION (AMS/SENSOR DEVICES) RELEVANT FOR UDDER HEALTH MONITORING & IMPROVEMENT PROGRAMS

Steven J. Sievert
Technical Director, National DHIA/Quality Certification Services, Madison, WI USA

Chair, ICAR Subcommittee for Recording and Sampling Devices
Chair, ICAR Sensor Devices Task Force
Current State of Sensor Technology

What is the Industry Telling Us?

- Technology is Improving Rapidly, Easily Adopted by Dairy Producers
- Too Many Isolated Packages – There is No Integration or Linkage
- Sensor Users Behave as a ‘Community of Practices’ – no True Standards or SOPs
- Validation, Maintenance, and Calibration Protocols are Missing
- We Are Making Decisions Based on Numbers Rather than Having Solutions Based on Data
What Can We Measure?

- Body Condition
- Body Weight
- Conformation
- Milk Yield
- Milk Composition
- Milking Speed
- Milk Flow Rate
- Teat Placement
- Estrus/Pregnancy
- Mastitis/Udder Health
- Pathogens
- MUN
- Ketosis
- VFAs
- Johne’s
- BVD
- BLV
- Heart Rate
- Rumination
- Mobility
- Feed Intake
- Respiration
- Chewing/Eating
- Methane Emission
- Animal Location
- Standing/Resting/Movement
- Hoof Health
- Temperature

The Current Focus of DHI Programs
Accuracy & Precision

- Cannot simply assume that you can be less accurate in measurement just because you have more data observations

- Improve accuracy by calibration & design
- Improve precision by quality control

- What are the accuracy & precision compared to the ‘gold standard’ for the industry?

- Cannot simply assume that accuracy & precision are acceptable when compared to other measures on the farm
Accuracy & Precision

- Some traits need high accuracy & high precision
 - Milking speed, body weight
- Some traits high accuracy & lower precision is okay
 - SCC, fat, protein
- Some traits lower accuracy & high precision is ideal
 - Body condition scores, activity measurements
Multiple Ways to Classify Sensor Data

Management Data
- Yield
- SCC
- Milking Speed
- Feed Efficiency

Animal Health Data
- Locomotion
- Reproduction
- Disease
- BCS/Weight

Animal Welfare Data
- Activity
- Mobility
- Eating, Resting
- Heat Stress

Data for Genetic Evaluations

Data Linked to Direct Farm Payments
- Yield
- Fat, Protein
- SCC

Alarm Data
- Heat Detection
- SCC
- Locomotion
- Location

Yes/No Data
- Pregnancy
- Disease

Trend Data
- BCS/Weight
- Milk Flow/Speed
- Feed Efficiency
- Eating, Resting

Different Needs for Accuracy & Precision
What are We Measuring?

Multiple Indicators of Mastitis or Milk Quality

- Automated CMT/WMT
- Electrical conductivity
- L-lactate dehydrogenase
- N-acetyl-beta-D-glucosaminidase
- ATP luminescence
- Thermal imaging
- Visible, NIR, MIR spectroscopy

Milk quality measures are affected by sampling time, temperature, milk viscosity, calibration.
All SCC Values Are Not Equal

The Case of the CellSense Sensor

- Automated CMT Test
- Estimates SCC content at 45 seconds into milking
- While correlated to total milk SCC it is NOT the same
- Visual scale of probable SCC value
- Algorithm is based on calibration/adjustment based on DHI SCC values and/or adjustment to bulk tank SCC
- Each sensor has its own bias (positive or negative)
Comparing Lely Sensors vs. Central Lab Component Results

- Poor correlation for SCC, moderate for fat & strong for true protein
- One measures representative sample of total milk and the other estimates at a point during milk letdown

Data from RYK (Denmark)
Using SCC Sensors

SCC sensors are intended for mastitis management – not animal evaluations

- Alarm or trigger data
- Detect and monitor subclinical mastitis
- Manage bulk tank SCC
- Develop action list for cows to culture
- Identify cows for selective dry cow therapy
- Identify cows to cull

Our current data flow systems cannot distinguish sources of SCC data – the need exists to capture source of data as well as reported value
Sensor Accuracy May Be Affected by Milk Flow

Accuracy is Not Constant Across Yield Volume or Breed

- Example of in-line analyzer compared to DHI lab results across the entire lactation
- In this case – underestimated fat yield & overestimated protein yield in the first 125 days of lactation
- Decisions are made at specific DIM or by alarms, not by lactation totals
Milking Speed Data – Available But Challenging

- Milk flow rates and milking speed data exists in on-farm software
- Different definitions of milking speed (kg/minute, yield over 300 seconds, etc.)
- Millions of observations available
- Data used for on-farm management - cow grouping, parlour efficiency, system performance, milker (human) performance
- Data for genetic evaluations - may be a superior data set to current qualitative coding of milking speed (1-5 scale)
Teat Placement Sensors

- Actual teat location
- Different algorithms and IP by manufacturer
- May or may not have teat shape, length or angle in data set
- Multiple measures over single lactation and over lifetime of cow
- Can we use this data?
We Need to Define the Parameter

Data Definition

• Define the parameter and recording period
 • 30 consecutive milkings - SCC
 • fraction of the milking - MS

• Other data to be captured
 • animal ID
 • date/time stamp
 • Parlour/stall location where applicable

Data Precision

• Precision of recording
 • 4.2% vs. 4.22% vs. 4.222%
 • There is an illusion of increased accuracy in some systems

• Capture & Averaging
 • Capture individual data points or mean values?

• Report SD/SE or Confidence Intervals?
Data Validation Questions

Data Handling
- Handling of missing data points
 - Estimated data included?
 - Mean of actual data only?
- Decision rules for handling and/or exclusion of outliers
- Data smoothing – monthly or weekly means vs. daily values

Data Validation
- Range of accurate measurement for sensor
- Distribution of errors
- Evaluation of algorithm
 - May need test data set to send through system algorithm to validate output.
Cumulative Effect of Sensor Errors

AMS/Robotic Systems
- Limited or no choice of milking stall
- Error effect is high

Parallel or Herringbone Parlours
- Cow behaviours lead to trends
- Error effect exists but is moderately low

Rotary Parlours
- Random stalls at each milking
- Error effect is low
Cumulative Effect of Sensor Errors

More observations are not the answer in all milk parlour configurations.
Connectivity is a Concern

Gaps in data observations

- How is the value computed?
- Estimations?
- Mean values without missing data?
- Affects the quality of data entering the system or the management decision process
Managing Multiple Streams of the Same Data

- Producer may contribute information for the same parameter from different measuring devices
- Need to capture not only data point(s) but also source of the data

How will we value each data point?
How will we value the whole record?
What information will we deliver?
How Will We Value Sensor Data?

The Same Parameter May Be Estimated by Different Methods with Different Data Values Assigned for Each Method

- **Equivalency to Traditional Test Day Data**
 - Define parameters that approximate the accuracy and precision of traditional milk recording parameters like milk yield or composition

- **Separate Classes of Data**
 - Currently Supervised or Owner Sampler Test Types – will we have a test type or class for specific sensor data?

- **Weighting of Data**
 - Data collection rating system that puts relative weight on data type, collection interval, and parameters measured

- **Use Validated Data Directly**
 - New parameters may deliver data with acceptable accuracy and precision and the data is used with minimal editing

- **Exclusion of Certain Data**
 - Results from specific parameters may be deemed to be unsuitable for herd recording programs at the present time