

K-Projekt ADDA – <u>AD</u>vancement of <u>D</u>airying in <u>A</u>ustria "Strategies to a Reduced Antimicrobial Use in Cattle"

Bacteriological milk samples and udder health

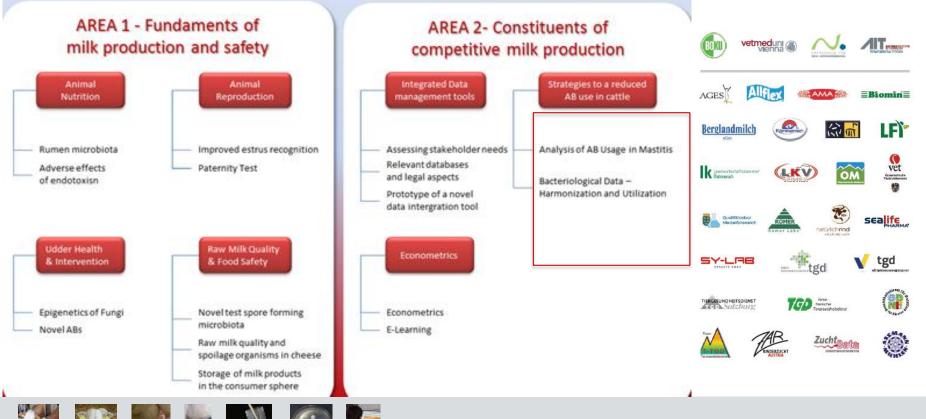
ICAR, Udder health meeting, 13th of June, 2017, Edinburgh

W. Obritzhauser¹, M. Suntinger³, B. Fürst-Waltl³, M. Mayerhofer², C. Firth¹, C. Egger-Danner²

¹Institut für Öffentliches Veterinärwesen, Vetmeduni, Vienna ²ZuchtData EDV-Dienstleistungen GmbH, Vienna ³Institut für Nutztierwissenschaften, Universität für Bodenkultur, Wien

Background

- Improvement of udder health is important
 - herdmanagement
 - genetic improvement
 - food safety
- Various data sources of importance
 - somatic cell count, diagnoses, pathogen information,...
- Bacteriological milk samples (pathogens)
 - Targeted treatment
 - relevant in the context of reduction of use of antimicrobials
 - additional information for genetic and herd management



ADDA "Advancement of Dairying in Austria" Project 2014-2017

Comet K-Projekt ADDA

Advancement of Dairying in Austria

 Research along the dairy chain including partners from farmer organisations, animal health service, feed companies, milk processors, labs, chamber of veterinarians, universities etc.

- Subproject 1 (A2_P1): Added value of linkage of various data sources on udder health
 - somatic cell count, diagnoses, bact. milk samples, bulk milk results
- Subproject 1 (A2_P2-SP1): Harmonization in bacteriological data generation
 - harmonisation of methods for bacteriological analyses of milk samples
 - harmonisation of definition of results link to health key
 - electronic data transmission to central cattle data base interface

What is important for stakeholders?

Comet K-Projekt ADDA

(Result of ADDA-survey on farmers and vets)

Advancement of Dairying in Austria

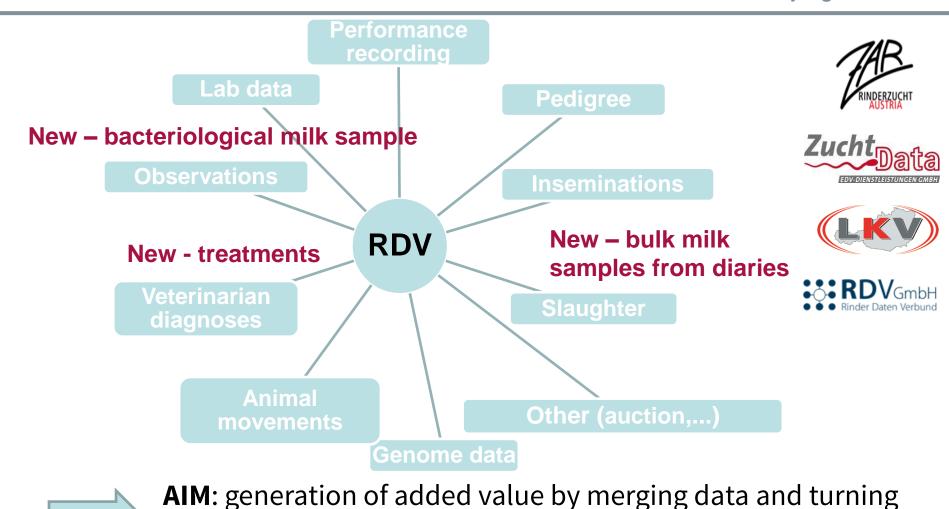
% very important and important

	Farmer	Veterinarian
Bacteriological milk samples	81	94
Milk samples for dairies	78	74
Diagnoses/electr. drug controll receipt	73/72	72
Disease status	72	83
Lab results	63	88-89
Services of milk recording		79
Results from feed analyses		78

Publications:

Perner, J., Egger-Danner, C., Weissensteiner, R., Fürst-Waltl, B., Wittek, T. (2016). Untersuchungen zur Entwicklung tierärztlicher Tätigkeiten in der Milchviehwirtschaft in Österreich unter besonderer Berücksichtigung der Datenverarbeitung in Tierarztpraxen. Wiener Tierärztliche Monatsschrift, 6/2016.

Weissensteiner, R., Fürst-Waltl, B., Gstöttinger, F., Hörmann, M., Janacek, R., Koblmüller, M., Mayerhofer, M., Perner, J., Schagerl, M., Schoder, G., Wittek, T., Zottl, K., Obritzhauser, W., Egger-Danner, C. (2016). Erhebung zur Nutzung von Daten in der Milchviehzucht – aktueller Stand und Weiterentwicklungsbedarf. Züchtungskunde (submitted)



Central cattle database (RDV)

Comet K-Projekt ADDA

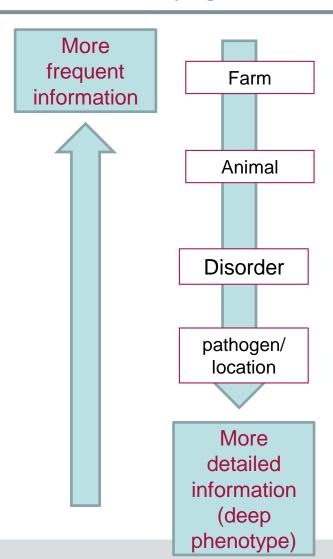
Advancement of Dairying in Austria

this data into information

From frequent overview to detailed information e.g. udder health

Comet K-Projekt ADDA

- Dairy: bulk tank milk sample
 - at least weekly
 - herd based
- Data from milk recording
 - every 4-6 weeks
 - animal based
- Farmer observations real time
- Veterinarian diagnoses / treatment
 - real time information
- Results from laboratories
 - e.g. bacteriological samples (each quarter)
- Other information (AMS, MIR,..)



Observational study from 01-10-2015 till 30-09-2016

- Use of antimicrobials in dairy farms focus on mastitis
 - 250 farms with about 7000 cows
 - 17 veterinarians

- Treatment data from vets
 - Electronic interface directly to central database
- Sampling of each quarter before treatment
 - Bact. interface ("milk-bacteriological analyses")

Added value of data integration

Comet K-Projekt ADDA

Bacteriological data

Advancement of Dairying in Austria

Preconditions – work to do:

- Standardisation for data integration -
 - Starting point AUSTRIA: 6 laboratories with differences regarding bacteriological analyses (methods), coding, ... - no comparable results
 - Starting point AUSTRIA: results primarily provided in a format that cannot be integrated in the central cattle database

Advancement of Dairying in Austria

Harmonised analyses of bacteriological milk samples

- Aim: Integration of results of bacteriological milk samples into central database
 - ✓ Standardised methods (guideline)
 - ✓ Defined Code-Set (ADIS-ADET)
 - ✓ Definition der BACT-interface
 - ✓ Access of labs to central database
 - ✓ Clarification of data protection issues
 - ≠ Check of resistance: unified panel to test antimicrobials (different labs use different panels – needs further work!)

Advancement of Dairying in Austria

Harmonisation of methods

✓ Standardised methods (Guideline)

LEITLINIE FÜR EINE HARMONISIERTE METHODIK BAKTERIOLOGISCHE MILCHUNTERSUCHUNG

gültig in	<labor></labor>
gültig für	<personen, "alle="" das="" die="" dokument="" für="" gültig="" ma"="" sein="" soll,="" z.b.=""></personen,>
Zweck	Diese Leitlinie beschreibt den bakteriologischen Nachweis von euterpathogenen Keimen.
untersuchte/r Parameter	Die hier dargestellte Methodik der bakteriologischen <u>Viertelgemelksuntersuchung</u> umfasst die Differenzierung von Mastitis-Erregern
Matrix	Milch
	1 Begründung
Übersicht	6 Reagenzien, Lösungen und Testorganismen

Comet K-Projekt ADDA

Advancement of Dairying in Austria

Harmonisation

✓ Defined Code-Set (ADIS-ADET*)

	Danatahanna	Maldon DDV
	Bezeichnung	Meldung an RDV
	Sc. agalactiae	8.1.2.1.
	Sc. Gr. C	8.1.2.107.
Streptokokken	Sc. dysgalactiae	8.1.2.2.
	Sc. equi	8.1.2.107.
	Sc. uberis	8.1.2.3.
	Streptococcus sp.	8.1.2.4.
	Sc. equinus	8.1.2.4.
trep	Sc. canis	8.1.2.28.
S	Sc. saccharolyticus	8.1.2.108.
	Sc. Gr. D	8.1.2.108.
	Sc. faecium	8.1.2.55.
	Sc. faecalis	8.1.2.56.
	Sc. alactolyticus	8.1.2.108.

	Bezeichnung	Meldung an RDV			
=	Staph. aureus	8.1.2.5.			
Staphylokokken	Staph. hyicus	8.1.2.94.			
ş	Staph. intermedius	8.1.2.95.			
abh	KNS (Koagneg. Staph.)	8.1.2.6.			
s	sonstige Mikrokokken	8.1.2.7.			

	Bezeichnung	Meldung a	an RDV
	E. coli	8.1.2.8.	
ive	Klebsiellen	8.1.2.9.	
Gram-Negative	Klebsiella pneumoniae	8.1.2.58.	
Ė	andere Enterobakterien	8.1.2.10.	
<u>e</u>	Pseudomonaden	8.1.2.14.	
	Pasteurellen	8.1.2.15.	*ADI

	Bezeichnung	Meldung an RDV			
	A. pyogenes	8.1.2.11			
	andere Corynebakterien	8.1.2.12.			
e e	Bacillus spp.	8.1.2.13.			
Sonstige	Mycoplasma sp.	8.1.2.16.			
Š	Hefen	8.1.2.17.			
	Prototheken	8.1.2.18.			
	Sonstige Erreger	8.1.2.19.			

*ADIS: according ISO 11787 international standardised data transmission matrix for electronic exchange of agricultural data

ADED = standardised Data Dictio-nary for agriculture

Advancement of Dairying in Austria

Harmonisation

✓ Interface for electronic data transfer

SCHNITTSTELLE BAKTERIOLOGISCHE EUTERBEFUNDE

Die Schnittstelle dient zur Meldung von bakteriologischen Euterbefunden in den Rinderdatenverbund.

Satzaufbau:

Lfd.Nr	Feld	Pflichteintrag	Format	Beispiele
1	Labor-ID	Ja	text	Lab01
2	LFBIS Betrieb	Ja	Zahl(8)	1234567
3	Tier Lebensnummer	Ja	text	040000123456789
				AT 123456789
				AT 123.456.789
4	Probedatum	Ja	DD.MM.YYYY	01.01.2014
5	Befundcode	Ja	Text	8.1.2.
6	Lokationscode	Nein	Text	HL, V, VR
7	Laborinterne Protokollnummer	Nein	Text	BU123456

standardized and labs can access database

Comet K-Projekt ADDA

Advancement of Dairying in Austria

Laboratories

Verwendete Codesets:

)	Befundcodes	
	8.	Laborbefunde
	8.1.	Milchdiagnostik
	8.1.2.	Milch-Bakteriologie (BU)
	8.1.2.1.	Sc. agalactiae (Gelber Galt)
	8.1.2.10.	Enterobacteriaceae spp.
	8.1.2.100.	Staph, saprophyticus

(non Staph, aureus) then, ausgeronnen)

rittels PCR)

SCHNITTSTELLE BAKTERIOLOGISCHE EUTERBEFUNDE

Die Schnittstelle dient zur Meldung vonlbakteriologischen Euterbefunden in den Rinderdatenverbund.

Satzaufbau:

ILfd.Nr	Feld	IPflichteintrag	Format	Beispiele
1	Labor-ID	Ja	text	Lab01
2	ILFBIS Betrieb	Ja	Zahl(8)	1234567
3	Tier Lebensnummer	Ja	text	040000123456789 AT 123456789 AT 123.456.789
4	Probedatum	Ja	DD.MM.YYYY	01.01.2014
5	Befundcode	Ja	Text	8.1.2.
6	Lokationscode	Nein	Text	HL, V, VR
7	Laborinterne Protokollnummer	Nein	Text	BU123456

Beschreibung der Feldinhalte

- Labor-ID: noch festzulegender eindeutiger Code des Labors
- Tier Lebensnummer: Im Format AT1234567 oder auch mit Interpunktion oder Iso_lebensnummer im Format 040000123456789
- 4. Probedatum: Datum der Probenahme auf dem Betrieb
- Befundcode entsprechend nachstehender Liste
- 6. Lokationscode entwprechend nachstehender Liste IFür jedes Euterviertel wird eine eigen Datenzeile geliefert
- 7. Laborinterne Protokollnummer, zur Erkennung von Änderungslieferungen

8.1.2.125. Chlamydia spp. (Nachweis mittels PCR)

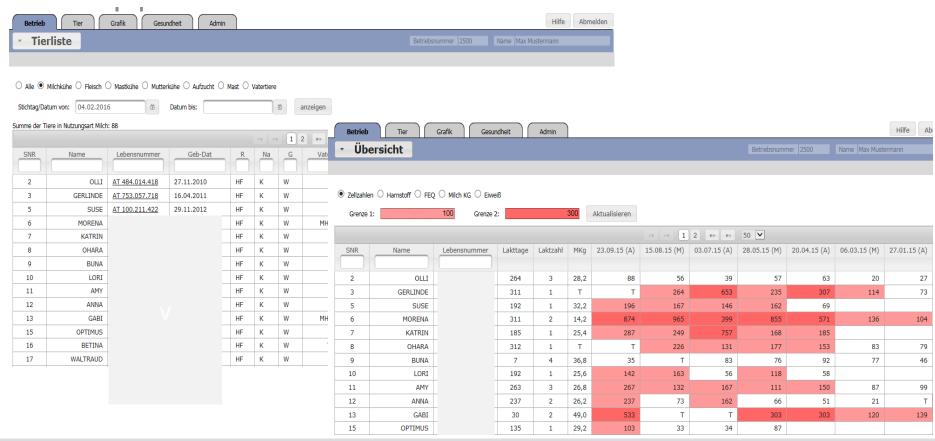
	8.1.2.13.	Bacillus spp.
ıse	8.1.2.14.	Pseudomonas spp.
	8.1.2.15.	Pasteurella spp.
	8.1.2.16.	Mycoplasma spp.
	8.1.2.17.	Hefen
	8.1.2.18.	Prototheca spp.

Access of laboratories to evaluations of data base implemented

						14 00 1	⇒ ⊳ Alle ✓							
Euterge- sundheit	Frucht- barkeit	FEQ	Harn- stoff	Leistung	SNR	Name	Lebensnummer	Geb-Dat	LA	Lakt Tage	R	Na	G	
•					113	NANNI	AT 401.537.714	08.06.2007	6	245	HF	K	w	1
					129	NATALIE	AT 181.218.617	27.11.2009	4	376	HF	K	W	1
					130	NACHTIGAL	AT 181.216.417	18.11.2009	5	322	HF	K	W	1
					131	MALI	AT 181.212.917	18.08.2009	4	215	BV	K	W	1
					132	TEA	AT 365.620.517	18.12.2009	5	117	FL	K	W	1
					133	FLAMME	AT 412.375.918	17.04.2010	5	254	FL	K	W	1
					138	TALA	AT 412.386.318	01.11.2010	4	241	FL	K	W	1
•					142	IMOAN	AT 652.460.218	10.06.2011	3	512	HF	K	W	1
					144	TARA	AT 011.695.719	01.01.2012	4	8	FL	K	W	1
•					145	EVA	AT 315.575.222	04.08.2012	2	260	FL	K	W	1
					147	TAUBE	AT 847.846.419	27.11.2012	2	361	FL	K	W	1
•					148	NUNA	AT 315.577.422	08.01.2013	2	320	HF	K	W	1
•					149	EMILIE	AT 723.143.422	06.08.2013	2	74	FL	K	W	1
					150	NORA	AT 173.640.528	23.10.2013	2	18	HF	K	W	1
					151	ELA	AT 723.144.522	06.08.2013	1	331	FL	K	W	1
					152	NARZISSE	AT 173.647.328	07.04.2014	1	250	HF	K	W	1
•					153	TAMARA	AT 173.654.228	08.06.2014	1	59	FL	K	W	1
•					154	ELINA	AT 576.994.928	25.07.2014	1	44	FL	K	W	1

New information for farmers

Distribution of positiv and negativ pathogen information arcoss 1 lactation ≡E. Coli von -10 bis 1 bis 10 11 bis 60 61 bis 120 121 bis 181 bis 241 bis 301 bis 361 bis >= 421



Bacteriological milk analyses

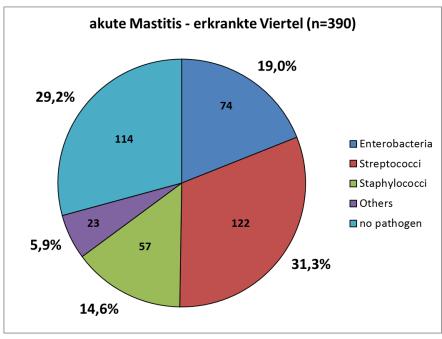
Comet K-Projekt ADDA

Advancement of Dairying in Austria

✓ Access of labs to various features of herdmanager (software) from central cattle database to support

Pilot project ADDA – acute mastitis Results on bact. milk samples

Comet K-Projekt ADDA

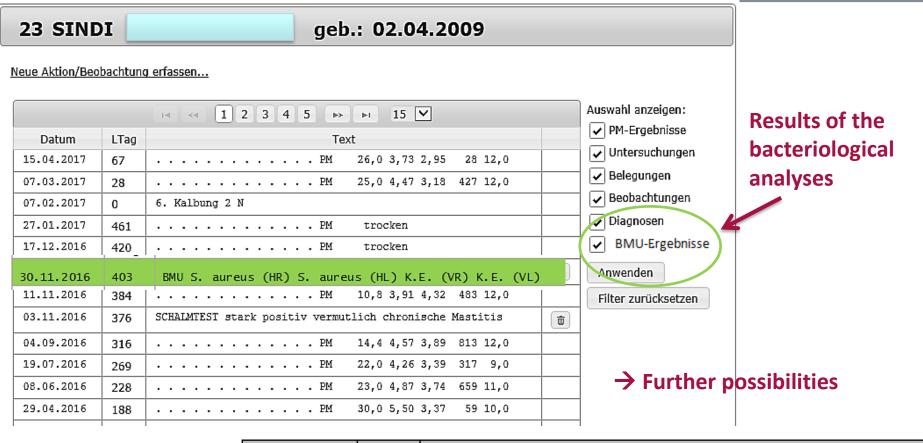

Advancement of Dairying in Austria

Results of bacteriological milk samples for veterinary diagnoses of acute mastitis

all quarters

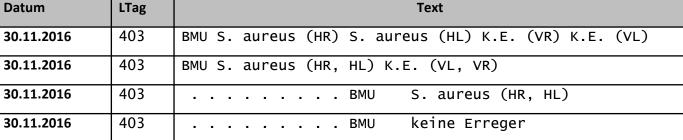
akute Mastitis - alle Viertel (n=1,566) 6,7% 11,6% 151 9,6% Streptococci Staphylococci Others no pathogen

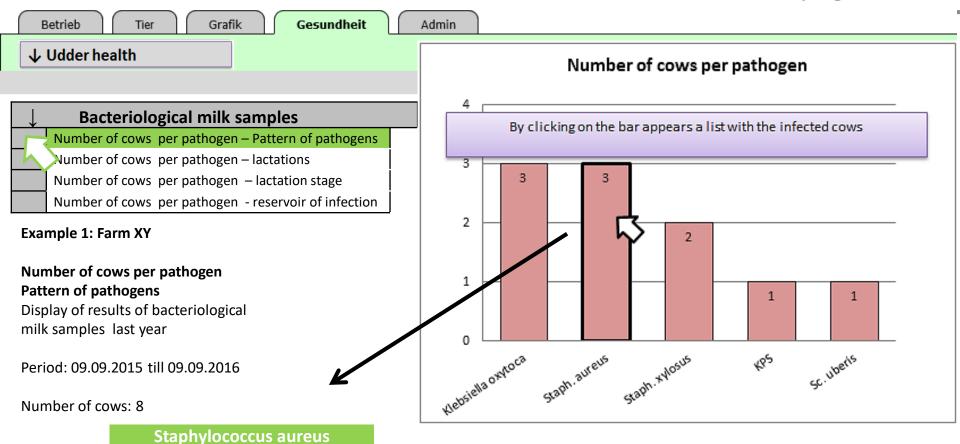
diseased quarters

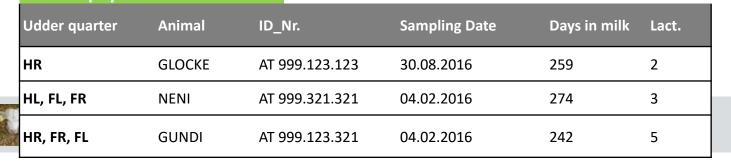


Bacteriological milk analyses Examples of use for herd management

Comet K-Projekt ADDA







Bacteriological milk analyses Examples of use for herd management

Comet K-Projekt ADDA

Bacteriological milk analyses Examples of use for herd management

Comet K-Projekt ADDA

Advancement of Dairying in Austria

Betrieb Tier Grafik Gesundheit Admin

Udder health

Betriebsnummer 721077 Name Mar

Bacteriological milk samples Number of cows per pathogen – pattern of pathogens Number of cows per pathogen – lactations Number of cows per pathogen – lactation stage Number of cows per pathogen - reservoir of infection

Example 4: Farm XYZ

Number of cows per pathogen - Reservoir of InfectionDisplay of results of bacteriological milk samples last year
Period: 18.09.2015 till 18.09.2016

Number of cows: 22

			conta patho		lı	Intermediate ???				environmental pathogens			
Ter	minology	and	group M Y K	ing? s A G	S T A P H	S D Y	K N S	S U B	E C O	E N B A sp.	S T R E P sp.	O T H E R	
	current	Nr. of cows	0	0	2	<u>4</u>	2	<u>3</u>	0	0	0	1	
	previous	Nr. of cows	0	1	3	1	2	4	<u>3</u>	1	<u>3</u>	0	

Genetic aspects

Use of results from bact. milk samples for herd management
(Suntinger et al. 2017)

Comet K-Projekt ADDA
Advancement of Dairying in Austria

Results on heritabilities

		h² (SE) linear model	h² (SE) threshold model	comparison of literature*
Staph. aureus	pathogen-specific traits	0.002 (0.001)	0.061 (0.035)	0.036 / 0.05
CNS		0.001 (0.001)	0003 (0.026)	0.100
Strept. dysgalactiae		0.003 (0.002)	0.049 (0.064)	0.021 / 0.05
Strept. uberis		0.004 (0.002)	0.037 (0.035)	0.,04
E. coli		0 (0)	0 (0)	0.032 / 0.06
Acute Mastitis	clinical mastitis traits	0.017 (0.005)	0.043 (0.014)	-
Chronic Mastitis		0.025 (0.005)	0.086 (0.025)	-
Unspecific Mastitis		0.025 (0.006)	0.036 (0.011)	0.061

*De Haas et al. 2002 / Haugaard et al. 2012

AUT: results based on data from labs before harmonisation – analyses with harmonised data in work

Comet K-Projekt ADDA

Challenges

Advancement of Dairying in Austria

- False positive results (false negative?) possibilty to filter?
- "Benchmarking comparison of farms "
 - Criteria for validation

Problem: heterogeneity in taking samples

Sampling → Single animals analysed vs. whole farms

Regular controls vs. sometimes (e.g. at dry off...)

- Grouping of pathogens ? Terminology?
 - contagious vs. environmental
 - * major pathogens vs. minor pathogens vs. others
- →effective grouping of pathogens? relevant grouping....? necessary for herd management and recommendations

- Results of bacteriological milk sampling valuable information for targeted treatment and herd management
- Potential for genetic analyses
- Difficulties/Challenges:
 - Different strategies on farm for sampling (routinely before mastitis, before dry off, partly herd sampling, partly individual cows,..)
 - Harmonized and comparable results
 - Harmonized terminology
 - Unified grouping of codings for recommendations
 - Comparable panels for testing of antimicrobials resistance are a further challenge

Comet K-Projekt ADDA

Recommendation

- Results of the bacteriological milk samples should be harmonized and recorded centrally
- Valuable for herd management and targeted use of antimicrobials
- Potential use for genetics as additional and more detailed information
- What can be included in ICAR Udder Health Guidelines?
 - Has IDF done work on that ? Terminology?
 - ICAR set for codes and inclusion in ICAR Health Key?
 - Grouping of pathogens (contagious vs. environement associated; major vs minor pathogens vs other?)
 - What should be included in guidelines?
- What is valuable for ICAR guidelines?
- How to continue?

Use of bacteriological milk samples for herd management and genetics

Thank you

Acknowledgement:

Partners from project ADDA including funding agencies. Special thanks to veterinarians and farmers participating in the pilot study and the partners from the labs involved in analyses of bacteriological milk samples.

