Updated guidelines for the recording, evaluation, and genetic improvement of udder health in dairy cattle

¹Animal Genomics and Improvement Laboratory Agricultural Research Service, USDA Beltsville, MD 20705-2350

*john.cole@ars.usda.gov
Introduction

- A healthy udder is free from mastitis, which is the most costly disease of dairy cattle (Seegers et al., 2003)
- Udder health has declined in many breeds because of unfavorable correlations with production (Ødegård et al., 2003)
- Poor udder health increases costs, results in higher rates of involuntary culling, decreases revenue, and harms animal welfare
- Genetic selection for improved udder health is an important part of dairy cattle breeding programs (Schutz, 1994; Heringstad et al., 2003)
Existing ICAR guidelines

SECTION 7.3 - GUIDELINES FOR RECORDING, EVALUATION AND GENETIC IMPROVEMENT OF UDDER HEALTH

7.3.1 General concepts

7.3.1.1 Reader instructions

These guidelines are written in a schematic way. Enumeration is bulleted and important information is shown in text boxes. Important words are printed **bold** in the text.

The aim of these guidelines is to provide dairy cattle breeders involved in breeding programmes with a stepwise decision-support procedure establishing good practices in recording and evaluation of udder health (and correlated traits). These guidelines are prepared such that they can be useful both when a first start to the breeding programme is to be made, or when an existing breeding programme is to be updated. In addition, these guidelines supply basic information for breeders not
What do we want in guidelines?

- **Best practices**
 - What data should be recorded? Who should collect them? How?

- **Concision**
 - Include only necessary information
 - Current guidelines are 27 pages...

- **Do not repeat work already done!**
Udder health phenotypes

<table>
<thead>
<tr>
<th>Type</th>
<th>Measure</th>
<th>Reference</th>
<th>Type</th>
<th>Measure</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct</td>
<td>Clinical mastitis</td>
<td>Bramley et al. (1996)</td>
<td>Indirect</td>
<td>Changes in SCC patterns</td>
<td>De Haas et al. (2008)</td>
</tr>
<tr>
<td>Direct</td>
<td>Subclinical mastitis</td>
<td>Bramley et al. (1996)</td>
<td>Indirect</td>
<td>Differential SCC</td>
<td>Schwarz et al. (2011)</td>
</tr>
<tr>
<td>Indirect</td>
<td>SCC</td>
<td>Schukken et al. (2003)</td>
<td>Electrical</td>
<td>conductivity</td>
<td>Norberg et al. (2004)</td>
</tr>
<tr>
<td>Indirect</td>
<td>Milkability</td>
<td>Sewalem et al. (2011)</td>
<td>Lactoferrin</td>
<td>content</td>
<td>Soyeurt et al. (2012)</td>
</tr>
<tr>
<td>Indirect</td>
<td>Udder conformation</td>
<td>Nash et al. (2002)</td>
<td>Pathogen-</td>
<td>specific mastitis</td>
<td></td>
</tr>
</tbody>
</table>

1 The indirect measures listed in italics were added to the revised guidelines.
Phenotype considerations

- Udder health data originate from various sources which differ considerably with respect to information content and specificity.
- The data source should be clearly indicated whenever information on udder health status is collected and analyzed.
- When data from different sources are combined, these origins must be taken into account.
Clinical and subclinical mastitis

- Clinical mastitis results in altered milk composition, and is accompanied by a painful, red, swollen udder (Bramley et al., 1996)

- Subclinical infections do not change the appearance of the milk or the udder, but milk composition is altered

- Subclinical mastitis is most commonly detected based on elevated SCC
Traits – milking speed

- Milking speed data are routinely collected by milking systems and stored in on-farm computer systems.
- Genetic correlations of SCS with milking speed generally are moderate and antagonistic.
- Selection for faster milking also may reduce risk of mastitis.
- Where is the optimum?
Traits – electrical conductivity

- Electrical conductivity is measured by most modern milking systems

- Cows with mastitis produce milk with increased milk conductivity (Norberg et al., 2004)

- Conductivity measurements at milking can be compared with previous measurements to identify changes consistent with subclinical mastitis
Traits – Lactoferrin content

- Lactoferrin is an iron-binding glycoprotein naturally present in milk.
- It also is released by neutrophils during inflammation, which is consistent with its role in host defense inflammation.
- Soyeurt et al. (2012) showed that MIR spectroscopy can cheaply and rapidly predict milk lactoferrin content.
New phenotypes are regularly suggested
Applications – Herd management

- Benchmarking supports successful farming
- Comparing cows to herdmates identifies individuals performing beyond expectations
- Cohort summaries permit benchmarking of farms against contemporaries
- Important when milk pricing schemes include differential payment based on milk quality
Applications—Population health

- National monitoring programs must meet the demands of authorities, consumers, and producers
- Farmers benefit from increased consumer confidence in safe and responsible food
- Disease surveillance is important to protect integrity of national herds
Applications – Genetic evaluation

- Breeding values for udder health traits of marketed bulls should be published routinely.

- Total merit indices should include an udder health sub-index.

- Udder health sub-indices may include both direct and indirect predictors of udder health.

- A combination of direct and indirect information maximizes the accuracy of selection.
Selection indices include many traits...

Source: Miglior et al. (2012)
Holstein somatic cell score (log$_2$)

Breeding value (log$_2$)

- 1984
- 1988
- 1992
- 1996
- 2000
- 2004
- 2008

Birth year

Phenotypic base = 3.0

Sires

Cows

0.02/yr

ICAR Chile 2016 – October 28, 2016 (16)
Conclusions

- Udder health guidelines will continue to evolve
 - Technology available for monitoring cow performance will improve
 - More precise phenotypes will become available for lower costs
- The goal remains to provide farmers with tools for making decisions
Affiliations

- C. Egger-Danner, ZuchtData EDV-Dienstleistungen GmbH, Vienna, Austria
- A.J. Bradley, University of Nottingham, School of Veterinary Medicine and Science, Sutton Bonington Campus, Leicestershire, UK and Quality Milk Management Services Ltd, Cedar Barn, Easton Hill, Easton, Wells, Somerset, UK
- N. Gengler, Agriculture, Bio-engineering and Chemistry Department, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
- B. Heringstad, Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway
- J.E. Pryce, Department of Economic Developments, Jobs, Transport and Resources and La Trobe University, Agribio, Bundoora, VIC, Australia
- K.F. Stock, IT Solutions for Animal Production (vit), Verden, Germany
Questions?

FTWG web site:
http://www.icar.org/index.php/technical-bodies/working-groups/functional-traits-working-group/

Holstein and Jersey crossbreds graze on American Farm Land Trust’s Cove Mountain Farm in south-central Pennsylvania

Source: ARS Image Gallery, image #K8587-14; photo by Bob Nichols
References - 1

References - 2

References - 3

References

