

Effectiveness of mid infrared spectroscopy to predict milk phosphorus content

M. Gelé, L. Brun-Lafleur, A. Boudon, P. Gaignon, T. Le Mouël, C. Hurtaud

Speaker: Marine Gelé

Session 5 - Methods to gather new phenotypes

Effectiveness of mid infrared spectroscopy to predict milk phosphorus content

Marine Gelé¹ (<u>marine.gele@idele.fr</u>),

L. Brun-Lafleur¹, A. Boudon², P. Gaignon², T. Le Mouël² & C. Hurtaud²

Estimating milk composition by MIR spectroscopy in France

- Fatty Acids: 54 equations of good quality
- Proteins: good precision for 4 caseins and 1 whey protein

What about other minerals?

Phosphorus in milk: a component of interest

- ✓ Phosphorus is involved in **bone health** and **human development** (Huth et al., 2006)
- ✓ Dairy products provide a third of Phosphorus dietary intakes in the USA (Huth et al., 2006)
- Phosphorus (and Calcium) plays an important role in cheese-making process, especially concerning ability of milk to coagulate and final consistency of the coagulum (Fossa et al., 1994)
- Methods to measure Phosphorus content are long and expensive

How accurate mid infrared spectroscopy is to predict Phosphorus content in milk?

Phenotyping Phosphorus content in milk with MIR spectroscopy

Milk sampling

Milk sampling

195 French herds in 2010

Selection of 500 milk samples from PhénoFinlait cryobank combining 7 criteria:

- ✓ Breed: 34% Montbeliarde / 33% Holstein / 33% Normande
- Days in milk: 25% early / 43% mid / 33% late lactation
 Number of lactation: 48% primiparous / 52% multiparous
- Milk yield level: 51% low level / 49% high level
- ✓ Protein content level: 50% low level / 50% high level
- ✓ Diet: 18% grass silage / 24% maize silage low concentrates / 19% maize silage high concentrates / 17% hay / 22% pasture
 ✓ Season: 50% winter / 50% summer

Milk analysis

MIR: mid infrared – StD: standard deviation

7

Calibration & cross-validation of the model

Calibration and cross-validation on 70% of the database:

- ✓ 136 herds 348 cows 348 samples
- Partial Least Square regression
- ✓ K-fold cross-validation
- ✓ Number of components = 10

	Ν	Mean	StD	R² _C	SEc	R ² _{CV}	SE _{CV}	RPD _{CV}
Phosphorus (mg/kg)	348	994	80	0.78	38	0.72	42	1.90
Soyeurt et al., 2009	87	1093	127	0.89	42	0.85	50	2.54
Toffanin et al., 2015	207	933	104			0.72	55	1.89
Visentin et al., 2016	210	1010	181			0.71	84	2.16
Stocco et al., 2014 (Buffalo)	167	1172	232	0.79	107	0.72	122	1.90

N: number of samples - StD: standard deviation – R_{C}^{2} and SE_{C} : coef. determination and standard error of calibration – R_{CV}^{2} , SE_{CV} and RPD_{CV} : coef. determination, standard error and Ratio performance to deviation of cross-valdiation

External validation of the model

	Ν	Mean	StD	R² _{EV}	SE _{EV}	RPD _{EV}
Phosphorus (mg/kg)	147	987	73	0.76	60	1.21
Soyeurt et al., 2009				0.88		1.88
Visentin et al., 2016	210			0.68		2.05

N: number of samples - StD: standard deviation -R²_{Ev}, SE_{Ev} and RPD_{Ev}: coef. determination, standard error and Ratio performance to deviation of external validation

database:

Take home messages

Phosphorus in milk = a component of interest for dairy sector

> Nutrition

idele.fr

Technology

An accurate prediction equation of Phosphorus content in milk was developed

- Will be used for research during a thesis on the relationship between milk mineral content and skeletal reserves in dairy cows
- > Should be improved before being implemented and used in routine

Special thanks

To my co-authors

L. Brun-Lafleur

A. Boudon B. P. Gaignon C. Hurtaud Th. Le Mouel

To PhénoFinlait consortium and financial supports

Thank you for your attention!

