

Genetic analyses of ketosis and a newly developed risk indicator in Fleckvieh, Braunvieh and German Holstein

H. Hamann, A. Werner, L. Dale, P. Herold

Speaker: Pera Herold

Genetic analyses of ketosis and a newly developed risk indicator in Fleckvieh, Braunvieh and German Holstein

H. Hamann¹, A. Werner², L. Dale², P. Herold¹

¹ State Office for Geoinformation and Rural Development Baden-Württemberg, Germany

² Association for Performance and Quality Testing Baden-Württemberg, Germany

Outline

- 1. Goal and derivation of the KetoMIR index
- 2. Genetic analyses
- 3. Results
- 4. Conclusion

Goal and derivation of the KetoMIR index:

- Modelling of ketosis risk via KetoMIR index
- Ketosis reference: Ketosis diagnoses registered in LKV-Baden-Württemberg health monitoring project GMON
 - -> 1000 dairy farms primarily herd management tool
- Variables:
 - Standardized MIR spectra available from January 2012 (Bentley & Foss, from November 2012 Bentley only) from regular milk analysis
 - Indirect usage by via MIR based components (standard milk recording components, fatty acids, minerals, aceton, BHB, citrat)
 - Environmental factors
 (Days in milk, breed, calving number)

Goal and derivation of the KetoMIR index:

KetoMIR index:

based on logistic regression numeric range between 0 and 1 partition in three classes

"healthy": 0.00 - 0.50

"low risk": 0.50 - 0.75

"high risk": 0.75 - 1.00

Calibration set Validation set

(n=109.479)

0.70 0.72

Specificity 0.86

Sensitivity:

0.84

(n=2.966)

Probability functions of the KetoMIR index and derivation of KetoMIR classes

Distribution of KetoMIR classes for breeds and weeks in milk

Fleckvieh (Dual purpose Simmental)

www.lgl-bw.de

Braunvieh (German Brown)

Deutsch Holstein (German Holstein)

high risk

low risk

healthy

Can the KetoMIR index be used as auxiliary trait in breeding programmes?

- Is the KetoMIR index (classes) heritable?
- How is the KetoMIR index genetically related to ketosis?

(How is the KetoMIR index genetically related to other traits of interest?)

Data:

Fleckvieh: 37.846

Braunvieh: 15.771 day records

Deutsch Holstein: 31.425

lactations with information for the first three test day records (analysed separately or as average)

Repeatability model (within breed):

HYS, lactation number, days in milk, permanent

environmental effect, animal effect

KetoMIR index → **KetoMIR classes (categorical)**

healthy – low risk – high risk → C3

→ KetoMIR classes (binary)

healthy vs low risk + high risk -> B050

healthy + low risk vs high risk → B075

Is the KetoMIR index (classes) heritable?

Heritabilities for the KetoMIR index, catecorical and binary classes

Fleckvieh (Dual purpose Simmental)

TD	Index C	3 B050	B075
1	0.22 0	.09 0.09	0.02
2	0.22 0	.04 0.05	0.01
3	0.30	.04 0.05	0.01
Ø	0.30 0	.08 0.08	0.01

Braunvieh (German Brown)

TD	Index	C3	B050	B075
1	0.23	0.11	0.09	0.02
2	0.28	80.0	0.09	0.01
3	0.34	0.11	0.11	0.01
Ø	0.33	0.11	0.10	0.00

Deutsch Holstein (German Holstein)

TD	Index	C3	B050	B075
1	0.24	0.13	0.12	0.04
2	0.28	0.12	0.12	0.02
3	0.39	0.13	0.13	0.01
Ø	0.34	0.15	0.14	0.03

How is the KetoMIR index genetically related to ketosis?

Genetic correlations between ketosis (clinical) and the KetoMIR index and categorical classes

	Fleckvieh		Braunvieh		Deutsch Holstein	
TD	Index	C3	Index	C3	Index	C 3
1	1.000	1.000	0.749	1.000	0.438	0.522
2	1.000	1.000	0.376	0.368	0.045	0.122
3	1.000	1.000	0.070	-0.194	0.052	-0.065
Ø	1.000	1.000	0.240	0.153	0.319	0.445

How is the KetoMIR index genetically related to other traits of interest?

Genetic correlations between KetoMIR index and traits for milk components

	TD	Fleckvieh	Braunvieh	Deutsch Holstein
Fat content	1	0.024	-0.077	0.002
	2	-0.280	-0.416	-0.262
	3	-0.294	-0.460	-0.339
	Ø	-0.194	-0.370	-0.190
	1	-0.661	-0.765	-0.663
Due te im e e mi e mi	2	-0.665	-0.709	-0.718
Protein content	3	-0.557	-0.613	-0.686
	Ø	-0.630	-0.680	-0.655
	1	0.468	0.463	0.385
Fat-protein-ratio	2	0.152	0.108	0.187
	3	0.055	-0.117	0.053
	Ø	0.239	0.143	0.212

Can the KetoMIR index be used as auxiliary trait in breeding programmes?

- Is the KetoMIR index (classes) heritable?

- How is the KetoMIR index genetically related to ketosis?

How is the KetoMIR index genetically related to other traits of interest?

Conclusion:

Data collecting as a matter of the routine milk analyses

Requirements for breeding value estimation are given

Establishment of a breeding value evaluation for the KetoMIR index

- based on a single test day record
- based on the average of several test day records

Calculation of economic weights

Cross validation based on breeding values

Thank you for your attention!

Breeding strategies:

Selection against ketosis liability:

- based on a single (first) test day record (strategy I) "breaking" the peaks in the KetoMIR curve
- based on the average of several test day records (strategy II)
 "lowering" the general level of the KetoMIR curve

Breeding strategies

How is the KetoMIR index genetically related to other traits of interest?

Genetic correlations between KetoMIR index and traits for milk components

	TD	Fleckvieh	Braunvieh Deuts	ch Holstein
	1	0.414	0.525	0.190
Milk yield	2	0.251	0.354	0.195
	3	0.160	0.207	0.274
	Ø	0.276	0.394	0.200
scs	1	0.412	0.386	0.391
	2	0.343	0.307	0.279
	3	0.417	0.402	0.266
	Ø	0.401	0.402	0.307

June, 15, 2017

