

Individual methane prediction from milk MIR spectra, across multiple breeds, lactation stages, partities and country-specific dairy farming systems

A. Vanlierde, N. Gengler, H. Soyeurt, C. Martin, E. Lewis, F. Grandl, M. Kreuzer, B. Kuhla, P. Lund, C. Ferris, C. Bertozzi, F. Dehareng

Speaker: Frédéric Dehareng

Walloon Agricultural Research Centre

Individual methane prediction from milk MIR spectra, across multiple breeds, lactation stages, parities and country-specific dairy farming systems

Vanlierde A., Gengler N., Soyeurt H., Martin C., Lewis E., Grandl F., Kreuzer M., Kuhla B., Lund P. Ferris C., Bertozzi C. & <u>Dehareng F.</u>

Context : Methane produced by ruminants

Greenhouse gas + loss of gross energy intake (6 to 12%)

Sources of mitigation of CH₄ emissions :

- genetics

- diet
- management

Development of a technique that allows large scale studies

FT-IR used in Milk Recording Organisation ?

Potential use of Mid infrared spectra of the milk ?

Position of the peaks → Qualitative analysis Intensity of the peaks → Quantitative analysis

Potential use of Mid infrared spectra of the milk ?

Potential use of Mid infrared spectra of the milk ?

Innovative use of MIR spectra

Principle of prediction

First equation of prediction

Potential use of milk mid-infrared spectra to predict individual methane emission of dairy cows

F. Dehareng^{1*+}, C. Delfosse^{1*}, E. Froidmont², H. Soyeurt^{3,4}, C. Martin⁵, N. Gengler^{3,4}, A. Vanlierde¹ and P. Dardenne¹

¹ Valorisation of Agricultural Products Department, Walloon Agricultural Research Centre, B-5030 Gembloux, Belgium; ²Department of Production and Sectors, Walloon Agricultural Research Centre, B-5030 Gembloux, Belgium; ³Animal Science Unit, Gembloux Agro Bio-Tech, University of Liège, B-5030 Gembloux, Belgium; ⁴National Fund for Scientific Research, B-1000 Brussels, Belgium; ⁵UR1213 Herbivores, INRAClermont-Theix Research Centre, F-63122 Saint Genès Champanelle, France

First equation of prediction

Figure 3 Infrared methane prediction on the basis of milk spectra of the day 1.5 for the different diets: corn silage (\bullet), fresh pasture (\bigcirc) and grass silage (+). PCA = principal component analysis.

Equation		SD	R ² c	R ² cv	SEC	SECV	
CH ₄ (g of CH ₄ /Kg of milk)		7.3	0.85	0.75	4.25	5.61	
CH ₄ (g/day)		128	0.77	0.70	87.8	100.6	
N = number of observations; SD = standard deviation; R^2c = calibration coefficient of determination; R^2cv = cross-validation coefficient of determination; SEC = calibration standard error; SECV = cross-validation standard error							

Merging of reference data sets

More data are needed to - include more variability

- improve performance of the equation

Merging of reference data sets

Use of different instruments

Standardisation step needed

EMR procedure (OptiMIR Project)

Merging of reference data sets

Methane predictions depending on lactation stage

\rightarrow Reversed curves

 \rightarrow Need to improve our model

Methane predictions depending on lactation stage

3821 Victoria, Australia

CRA-W

Individual methane prediction from milk MIR spectra www.cra.wallonie.be

Methane predictions depending on lactation stage

Equation (g/day)	Ν	SD	R ² c	R ² cv	SEC	SECV
CH ₄	446	132.6	0.78	0.74	63	68
CH ₄ and DIM	446	127.5	0.75	0.67	63	72

N = number of observations; SD = standard deviation; R^2c = calibration coefficient of determination; R^2cv = cross-validation coefficient of determination; SEC = calibration standard error; SECV = cross-validation standard error

→ Statistical parameters are a slighty lower...

...BUT!

Methane predictions depending on lactation stage

Application of CH₄ equations on Belgian spectral database 1st lactation Holstein cows

 \rightarrow In accordance with literature

Methane predictions depending on lactation stage

Application of CH₄ equations on Belgian spectral database

Trends over lactations correspond to what is expected

Institution	Reference Method	Number of animals	Number of data	
CRA-W	SF ₆	47	265	
Teagasc	SF ₆	110	262	
AFBI	Chambers	12	24	
Aarhus	Chambers	19	130	
Qualitas/ETH Z	Chambers/SF ₆	42 + 16	99 + 59	
FBN	Chambers	52	213	
Inra	Chambers	9	82	
Total		307	1134	

allonie

RA-W

cherche

Equation (g/day)	Ν	SD	R²c	R ² cv	SEC	SECV
SF ₆	446	127.5	0.75	0.67	63	72
SF_6 + Chambers	1134	106.1	0.64	0.60	64	67

N = number of observations; SD = standard deviation; R^2c = calibration coefficient of determination; R^2cv = cross-validation coefficient of determination; SEC = calibration standard error; SECV = cross-validation standard error

Phenotypic and Genetic Large-Scale Studies

Phenotypic and Genetic Large-Scale Studies

J. Dairy Sci. 100:1–14 https://doi.org/10.3168/jds.2016-11954 Article In Press, Open Access

© 2017, THE AUTHORS. Published by FASS and Elsevier Inc. on behalf of the American Dairy Science Association[®]. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Genetic parameters of mid-infrared methane predictions and their relationships with milk production traits in Holstein cattle

P. B. Kandel,* M.-L. Vanrobays,* A. Vanlierde,† F. Dehareng,† E. Froidmont,‡ N. Gengler,* and H. Soyeurt*¹ *Department of AGROBIOCHEM and Terra Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium

†Department of Valorisation of Agricultural Products, Agricultural Product Technology Unit, and

‡Department of Production and Sectors, Animal Nutrition and Sustainability Unit, Walloon Agricultural Research Centre, 5030 Gembloux, Belgium

Conclusions

- It is possible to predict methane from milk MIR spectra
- Important to check if the applications at large scale are logical at a metabolic level
- Integration of DIM information seems to be a good strategy to :
 - take a better account of the metabolic status of cows
 - improve the equation
- Important to include further regions/breeds/regimes to cover the variability
- Merging of data set strategy : analytical standardisation of reference measurements is needed
- Easy and cheap method for large scale utilisation

Thanks to our support and partners !

Wallonie recherche CRA-W