

Possible principles for breed association models in the genomics era, with reference to beef cattle and sheep breeds *R. G. Banks*

Speaker: Robert Banks

Possible principles for breed association models in the genomics era, with reference to beef cattle and sheep breeds

> Rob Banks Director, AGBU rbanks@une.edu.au

AGBU 2017

The future for breed associations, societies

- Is as R&D organisations, aiming to:
 - Maximise $r.\delta_s$ per funds invested for some defined gene pool
 - Maximise ir/L
- This will require:
 - New forms of association
 - New pricing and rewarding models
 - Likely long-term partnerships with others in the value chain (either private and/or public)

Perspectives, within and between countries:

- Within-country "rules":
 - Have to be equitable and efficient
 - Must have well-designed incentives/rewards, and minimise free-riding
- Between-country:
 - Sharing data is almost invariably a win-win (benefit may be small, but cannot be negative)
 - Shared or coordinated design young sire sampling, designed phenotyping and genotyping – will increase value
 - Estimating r_g between countries for objectives and for traits should be core activities
 - These are true irrespective of whether there is one evaluation or many
- Are these consistent?
 - Do "breeds" need to work as global partnerships or networks to survive?

Summary:

- Genomic selection is a radical innovation (breaks the nexus between records and EBVs)
- <u>But</u> it requires radical organisational innovation to obtain benefits:
 - New models for coordinated breeding program design
 - New partnerships to achieve those new models
 - ideally whole chain
 - Focus on creation of information and harvesting its value, not on dragging breeders into new technology
 - As always, <u>effective</u> cooperation can generate greatest longterm benefits
 - We need clever thinking and R&D

A (bad) example - the Australian energy market

- Sources of energy:
 - Coal-fired
 - Natural gas (on- and off-shore)
 - Hydro-electric
 - Wind
 - solar
- Rapid change in relative properties of sources
 - Cost
 - reliability
- "market" is a mix of state and private entities, with a regulator
- Chronic problems of over-investment in some components (poles and lines), coupled with extremely inefficient signalling & rules, and apparently limited appreciation of scope for gaming ie network architecture

Breed associations:

- Some core services (database, staff, analysis)
- Multiple diverse members:
 - Differ in behaviours (recording, selection, marketing)
 - Recording effort seems to be repeatable
 - Selection effort not repeatable
 - Differ in contribution (a power law distribution)
- Incentives
 - internal and external sales
- Externalities
 - Exist with P and pedigree
 - Exponentially more with genomics
- Rules and decision-making around purity and charges
- Is there a reason to care?

Key challenges:

- Managing variation, not imposing conformity
 - Maximal variation in animals is ideal
- Meeting customer expectations
 - Minimal variation is ideal
- Aggregating diverse data to produce information
 - Different data has different value
- Core costs are unchanged, so you have data + core processing gives rise to EBVs (etc) which give rise to selection and multiplication
 - − Data + process ⇒ information ⇒ decisions (selection, multiplication)
 - $v(data) \implies v(information) \implies v(selection)$

Simple case:

- 1 reference population (n = 1,000), where all recording takes place
- A breeding nucleus (n = 10,000) which produces bulls, which breed commercial progeny (n = 360,000)
- Divide total reference population cost across bulls, heifers, and commercial progeny
- Should we charge more for tests on bulls and heifers because they have more expressions?
 - c. 44 expressions per nucleus bull or heifer
 - 1 expression per commercial animal
- Charging too much or too little will cause distortions
- Can differential charging work?
 - If reference costs \$1m pa, royalty for nucleus animals = \$55, and for commercial = \$1

Real life:

- Reference population:
 - Some defined collective investment in HTM traits
 - Some variable investment by individuals in other traits
- Costs in total:
 - HTM traits
 - Other traits, variable investment per animal (and per breeder)
 - Core database and analysis, and other overheads
 - genotyping
- Recouping costs, principles are the same as for the simple case
- So, should system recognise variation in "other trait" recording?

Pros and cons:

- If market already rewards genetic superiority, is there a risk of double counting?
- Reward function needs to:
 - Be non-linear (because returns are not unlimited, and oversubscription will bankrupt you)
 - Reflect overall return for investment ie the regression of reward on increment of objective accuracy must be the right level
- What about generating optimal recording and mating sets, and "penalising" deviations

Two "easy" solutions:

- Completely rule-defined, allowing no variation:
 - More cost to implement (who pays?)
 - Needs very strong belief in the rules, and ultimate success
 - Who sets the rules?
- Completely market-based
 - Very easy ("the market decides")
 - Implementation risk is minimised
 - Outcome risk is maximised
- Neither is ideal

Principles:

- Phenotypes vary in quality, or value this needs to be recognised, ideally at the point or time of that decision
- Variation in selection (direction, rate) affect both the individual and the breed needs to be minimised
- Mechanism for "payment"
 - Cash is impossible for most organisations
 - Waiving royalties, and/or providing advice is more feasible
- Would point of decision apps help shift all decisions towards optima?
- Rewards or incentives must have limits, and are likely to reinforce any market rewards – risk of emigration

