

Latest innovations for the monitoring of milk hygienic quality, methods automation and standardization

P. Broutin

Speaker: Pierre Broutin

Latest innovations for the monitoring of milk hygienic quality, methods automation and standardization

By Pierre Broutin
Managing Director WEU/Senior Scientist

Presentation outline

New BactoCount IBC, a unique multiplex solution for the real time monitoring of mil hygienic quality (total flora, somatic cells, bacteria & somatic cells ≠...)

BactoCount/Somacount Worldwide standardization

Milk Amyloid A (MAA) Assay – a better marker for subclinical mastitis diagnostic

New automation solutions for optimum laboratory & methods standardization

Worldwide infrared spectra standardization (patent pending)

Over 25 years of experience in flow cytometry (FC) and monitoring of milk hygienic quality

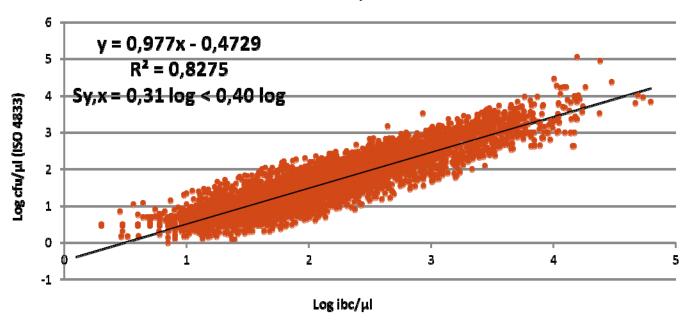
- 1991 **Somacount 300/500** (1st somatic cells counter using flow cytometry)
- 1995 **Bactocount 70** (1st bacteria counter using flow cytometry)
- 2001 BactoCount IBC 50-150 (1st ISO 16140 certified bacteria counter (FC))
- 2002 BactoCount IBC M (1st integrated bacteria (ISO 16140) & somatic cells counter (FC))
- 2008 Somacount FCM 500/600 somatic cells counter (FC)
- 2017 Bactocount IBC 200 (total bacteria, total somatic cells, bacteria & somatic cells ≠ ...

BENTI

A new analytical revolution in the monitoring of milk hygienic quality (total bacteria, somatic cells, ≠ ...)

A new analytical revolution in the monitoring of milk hygienic quality (total bacteria, somatic cells, ≠ ...)

- A unique multiplex solution for the real time monitoring of milk hygienic quality (total flora, somatic cells, total flora & scc ≠...)
- Flow cytometer equipped with multiple lasers and detectors
- Automatic cytometer standardization
- Based on proven technologies and over 25 years of experience in flow cytometry
- Same software platform for all our Nexgen instruments
- Full compatible with the new Intellitech ILAS 4000 robot for complete method standardization and automation
- Fully compliant with ISO/IDF international standards
- Up to 200 samples/hour



BactoCount IBC: A highly standardized method for international Results Equivalence

BactoCount vs ISO 4833 European Conversion Equation

7706 raw milk samples analyzed over 10 years 22 BactoCount, 11 EU Countries

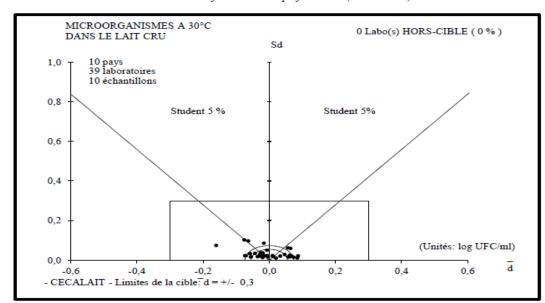
BactoCount IBC: A highly standardized method

ISO 17043 Accredited International Proficiency Test (IBC)

September 2016 RT:

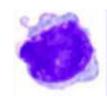
- 39 BactoCount
- 10 countries
- 0% lab. outside target

Sr = 0,017<< 0,09 log* (5x) SR = 0,064 << 0,16 log* (2,5x)

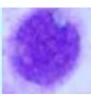

BactoCount fully complies with ISO 16140*

BactoCount Reproducibility within ISO 16140* Repeatability

Over 350 participating laboratories in 2016


Figure 2: JUSTESSE - Evaluation des performances individuelles (voir le tableau I).

ACCURACY - Evaluation of the individual performances (to see table I).

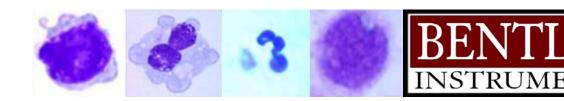

Number	1	2	3	4	5	6	7	8	9	10	Mean
N	39	39	38	39	38	39	39	39	38	39	
Mean	5,29	5,75	5,06	4,83	5,27	5,56	5,13	5,46	4,24	4,95	
Sr	0,01	0,02	0,01	0,02	0,01	0,01	0,01	0,01	0,03	0,02	0,017
SR	0,07	0,06	0,05	0,05	0,05	0,07	0,06	0,07	0,09	0,06	0,064

WORLDWIDE EQUIVALENCE OF SOMATIC CELLS COUNT

Bentley Lyophilized Somatic Cells Standards

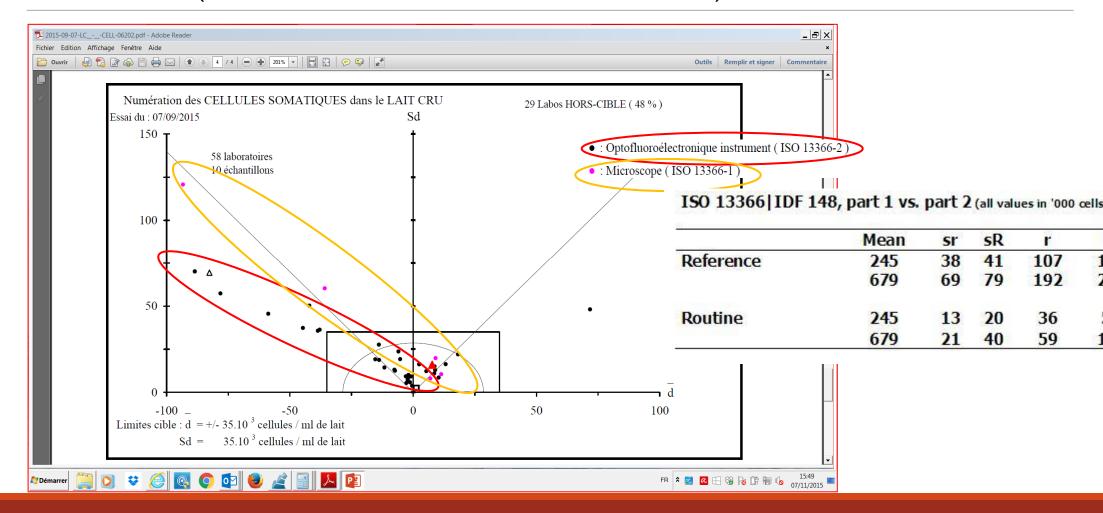
DOM 05/2015

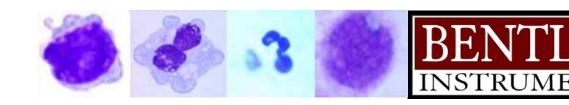
Bentley Instruments


CERTIFICATE OF ANALYSIS

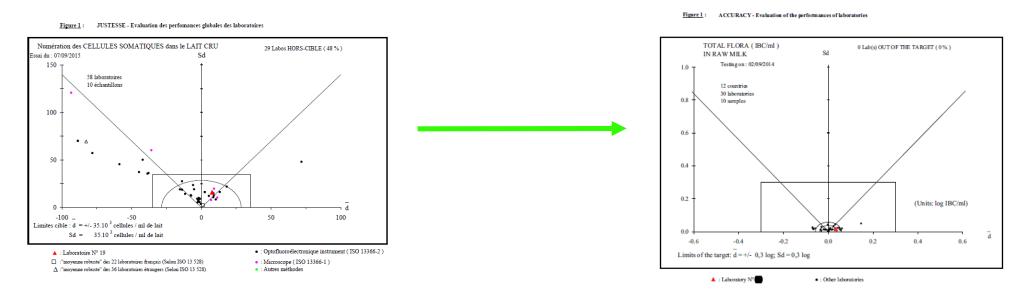
Somacount SCC Lyophilized Control Sample

Description	Lot N° D00M05Y15	SCC Value (/µL)
SCC Control Sample	Α	126 ± 10% (113-139)
SCC Control Sample	В	313 ± 10%(282-344)
SCC Control Sample	С	465 ± 10%(418-511)
SCC Control Sample	D	778 ± 10%(700-856)
SCC Control Sample	E	1019 ± 10%(917-1121)


Reconstitution Procedure


- Heat sterile water to 40°C ± 2°C in a water bath
- Remove the aluminium seal and stopper from the vial
- Add 14.0 g ± 0.2g of sterile water into the vial of lyophilized somatic cells
- Mix vigorously until lyophilisate is completely re-suspended and place it in a water bath at 40°C±2°C for 10 minutes
- Mix vigorously the sample until it looks like regular milk
- Analyze the reconstituted sample in duplicates within 30' after reconstitution

WORLDWIDE EQUIVALENCE OF SOMATIC CELLS COUNTS


Current situation (international RT with Reference & alternative methods)

Somacount & BactoCount

ISO 17043 Accredited International Proficiency RT (pending)

BactoCount RT

http://www.fil-idf.org/idficar-project-group-reference-system-somatic-cell-counting/

Milk Amyloid A (MAA) assay to improve subclinical mastitis diagnostic and reduce the use of intramammary antibiotics at drying off

- Milk Amyloid A (MAA) is one of the first Acute Phase Protein produced by the epithelial cells following infection of the mammary gland
- MAA Concentration may increase up to 1000-fold following localized inflammation and has been shown decline rapidly following recovery.
- It provides a useful, more specific marker than somatic cells for the detection of both clinical and subclinical mastitis at a quarter level
- MAA can be used for selective dry cow therapy at quarter level with confidence and enables dairy farme to significantly reduce the use of antibiotics at drying off

29% reduction in the use of intramammary antibiotic therapy at quarter level at drying off (Biotek lait)

Amyloid A (MAA) biomarker to improve subclinical titis diagnostic and reduce the use of intramammary piotics at drying off

Table 2. Proposed cutoff values and resulting sensitivity (Se), specificity (Sp), and area under the curve (AUC) for the California mastitis test (CMT), somatic cell count (SCC), milk haptoglobin (MHp), milk amyloid A (MAA), serum haptoglobin (SHp), and serum amyloid A (SAA) for the detection of subclinical mastitis based on bacterial culture results.

Analyte	Cutoff	Se (95% CI)	Sp (95% CI)	AUC (95% CI)
CMT	>1	82.1 (73.4-88.8)	94.1 (88.2–97.6)	0.965 (0.915-0.989) ^{a,b}
SCC (× 1000 cells/mL)	>130	89.6 (82.2–94.7)	72.0 (63.0–79.9)	0.948 (0.894-0.980) ^{a,c}
MHp (mg/L)	>3.9	90.6 (83.3-95.4)	68.6 (59.5–76.9)	0.886 (0.817-0.935)c,d
MAA (mg/L)	>16.4	90.6 (83.3–95.4	98.3 (94.0–99.7)	0.998 (0.967-1.000)b
SHp (g/L)	>0.05	90.0 (76.3–97.1)	64.43 (54.7–71.6)	0.782 (0.713-0.841)
SAA (mg/L)	>159.1	90.0 (76.3–97.1)	72.1 (61.4–81.2)	0.836 (0.759-0.896) ^d

Analytes with common superscript letters are not significant differently from each other. CI, confidence interval.

Acute phase proteins in the diagnosis of bovine subclinical mastitis

Shahabeddin Safi¹, Ameneh Khoshvaghti², Seyed Reza Jafarzadeh³, Mahmoud Bolourchi⁴, Iradj Nov

¹Department of Clinical Pathology, Faculty of Specialized Veterinary Sciences, Islamic Azad University, Science and Research Branch, Tehra ²Department of Clinical Sciences, Faculty of Veterinary Medicine, Islamic Azad University of Kazeroon, Kazeroon, Iran; ³Department of Me Epidemiology, University of California, Davis, CA, USA; and ⁴Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tehran, Iran

Natural Clinical Mastitis			
Sensitivity	Specificity	Reference	
93.0%	100%	Eckersall et al. 2001	

Natural Subclinical Mastitis				
Sensitivity	Specificity	Reference		
90.6%	98.3%	Safi et al. 2009		
92.3%	92.1%	Shirazi-Beheshtiha et		

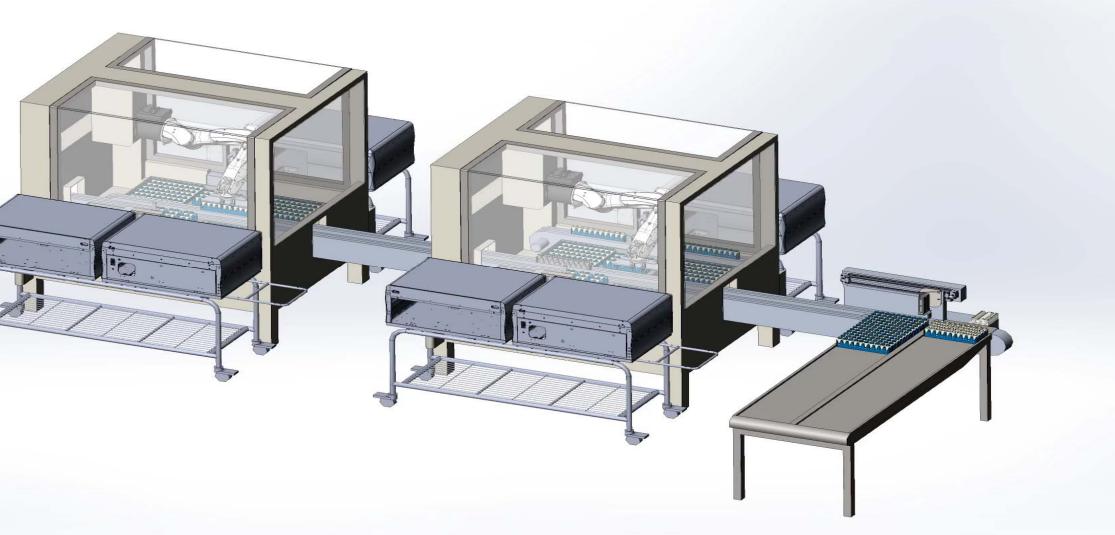
biFTS complete automation & dardisation with the ILAS3000

ey CombiFTS ILAS 600 IZ

tandardization & automation mples handling:

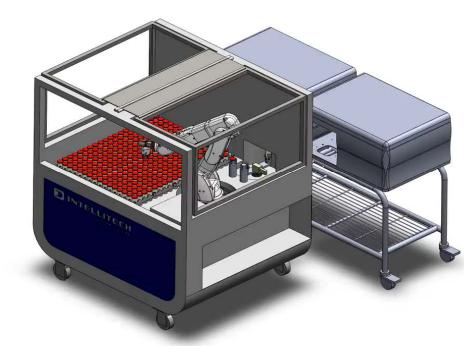
tification (RFID, Barcode...)

oles heated up to 40°C en apped ed under instrument pipette aced in their original position ibility to sort the samples



33500 Combi Automation (rack based)

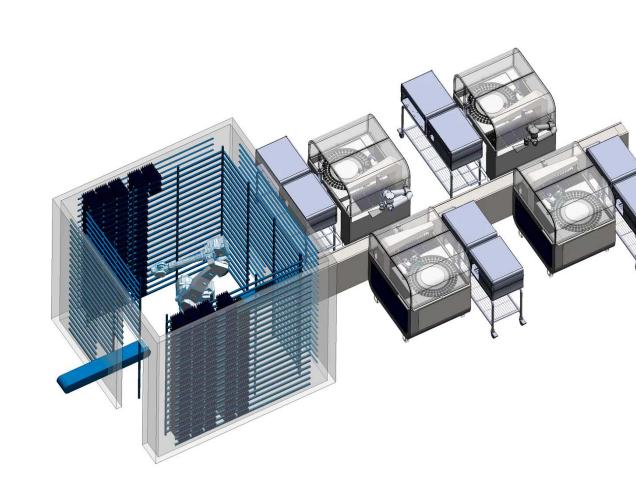
oCount automation & standardisation 🗊 💌 TELLITECH the ILAS4000

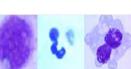


tley BactoCount ILAS 4000 (refrigerated)

standardization & automation amples handling:

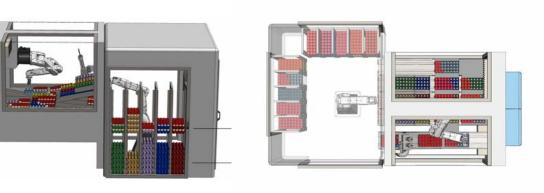
ntification (RFID, Barcode...) ken capped/pierced ced under instrument pipette placed in their original position

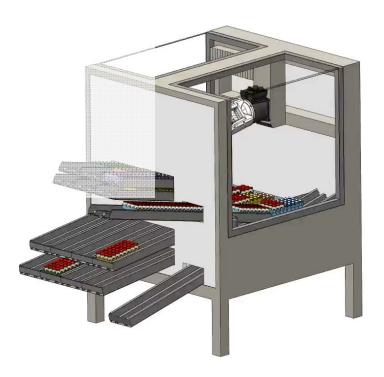

plete Laboratory Automation andardisation



ples trays placed on conveyor system s sorted out and stored at 4°C s transferred to available BactoCount/CombiFTS s loaded/unload automatically on instruments

plete standardization of samples handling plete standardization of operating conditions imized laboratory throughput




ples Sorting automation

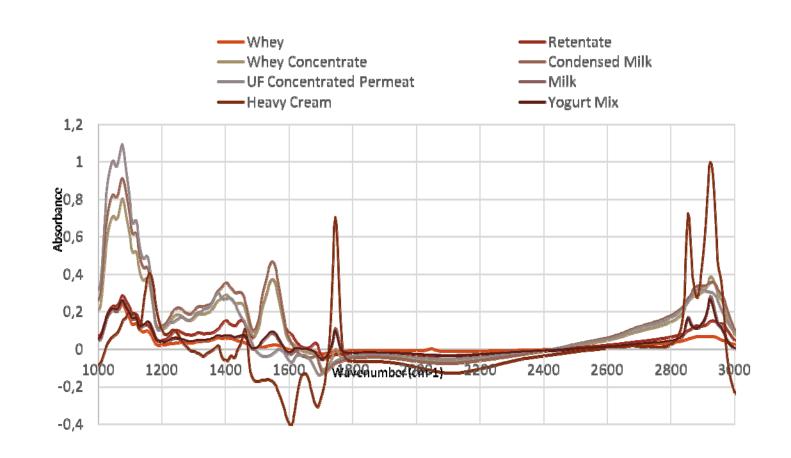
nples automatically sorted out for secondary testing to 6 parameters to 8000 vials sorted in 3 hours nples maintained at 4°C during the process of color used to identify tests type

Worldwide MIR Spectra Standardization

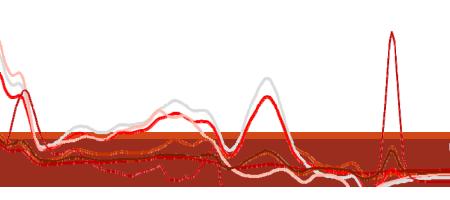
Bentley IR Cell and Spectra standardization

A new highly effective and simple approach (patent pending)

By Pierre Broutin
Managing Director/Senior Scientist



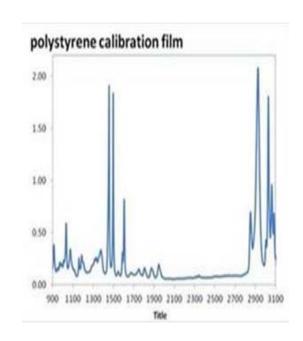
Bentley FTS/DairySpecMilk Components Absorption wavebands

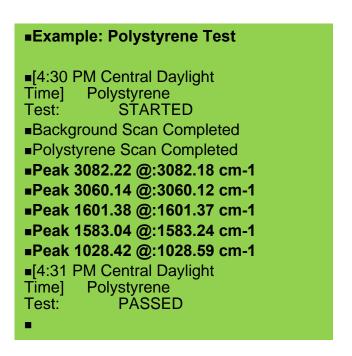


Bentley IR Cell and Spectra standardization Why?

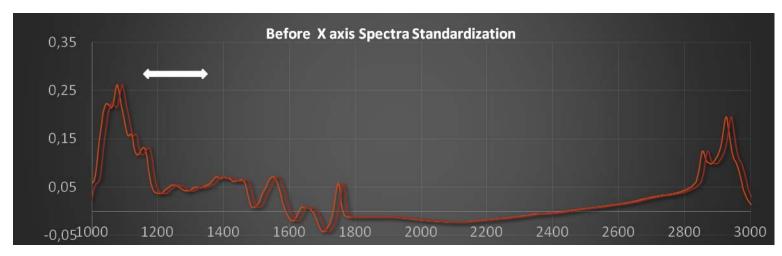
- Interferometer laser frequency can vary over time ⇒ spectrum x axis shift
- Flow cell path length can increase over time
 → spectrum y axis shift

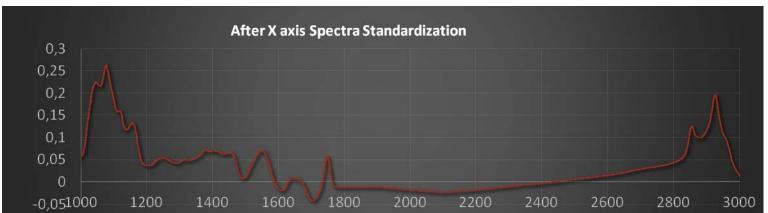
Thus, spectra standardization is very important:


- oFor optimum calibration transfer between instruments
- oFor worldwide results equivalence
- oFor results/calibration stability (Slope/Bias)
- oTo reduce calibration development cost (centralized calibrations)
- oFor implementation of qualitative spectral analysis

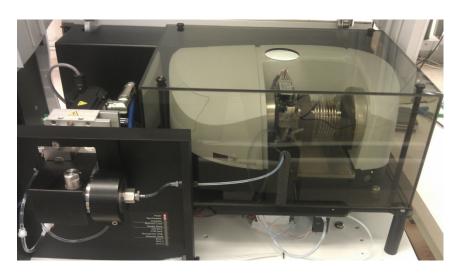


1 - Standardization of spectrum x axis with a polystyrene film to calibrate optimally interferometer laser frequency

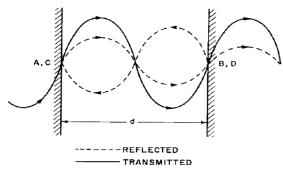


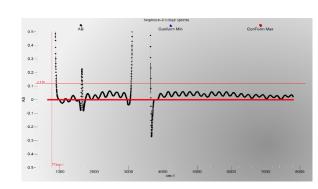


(internationally recognized NIST standard)

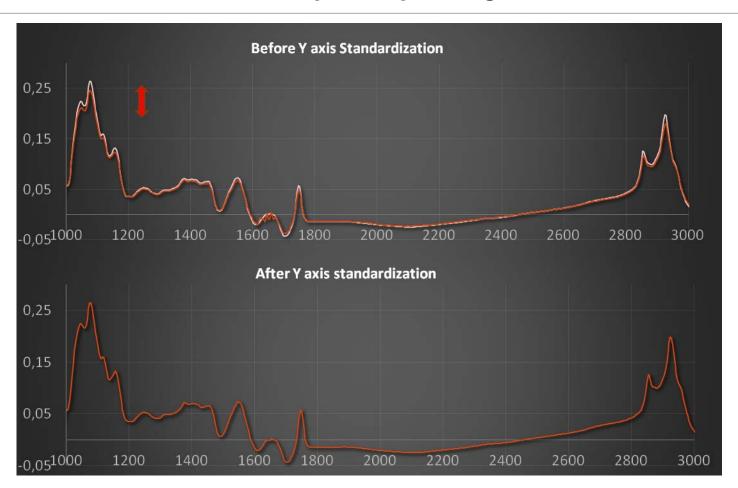

1 - Standardization of spectrum x axis with a polystyrene film to calibrate optimally interferometer laser frequency

2 - Standardization of spectrum y axis (absorbance) by measuring very accurately and in real time the IR flow cell path length (patent pending)





2 - Standardization of spectrum y axis (absorbance) by measuring very accurately and in real time the IR flow cell thickness (patent pending)


Summary Report

•Repeat 1	= 36.08468
•Repeat 2	= 36.08663
•Repeat 3	= 36.08227
•Repeat 4	= 36.08309
•Repeat 5	= 36.08712
•Repeat 6	= 36.08846
•Repeat 7	= 36.08889
•Repeat 8	= 36.09445
•Repeat 9	= 36.08202
•Repeat 10	= 36.09503

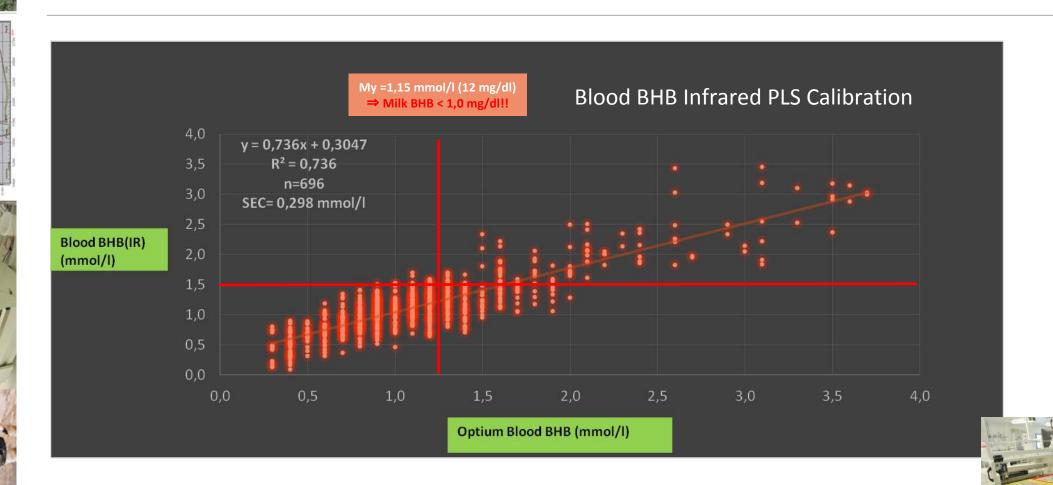
Average Cell Space calculated = 36.0873u Standard deviation = 0.0046um

2 - Standardization of spectrum y axis (absorbance) by measuring very accurately and in real time the IR flow cell thickness (patent pending)

2 - Standardization of spectrum y axis (absorbance) by measuring very accurately and in real time the IR flow cell thickness (patent pending)

Why this way?

- Laser calibrated with NIST traceable films (polystyrene)
- Does not require any highly accurate liquid mixtures
- No consumable to package, store, maintain or process
- Automatic execution, no user dependent operations
- Can be performed as often as necessary
- A very reliable, easy to implement, and cost effect effective solution


ICAR INTERNATIONAL CONGRESS – EDINBURGH, SCOTLAND JUNE 14-16, 2017

Ketosis detection in DHIA testing

A new global metabolic infrared spectral approach to predict Cows Blood BHB from their Milk Spectra (patent pending)

Thank you for your attention!

pbroutin@bentleyinstruments.com

www.bentleyinstruments.com

ICAR INTERNATIONAL CONGRESS – EDINBURGH, SCOTLAND
JUNE 14-16, 2017