

Employing high resolution big data for predictive modelling in precision dairy farming

G. Katz

Speaker: Gil Katz

Dairy farming in the emerging era of IOT

CONVERGENCE OF MEGA TRENDS

The INTERNET OF THINGS

Automated Data Collection and Analysis

afimilk

Manage and merge different Data types

Quantitative data (monotonic structure) milk yield, milk components, milk flow, weight

Qualitative data (discreet structure) gynecological status, health status ...

Behavioral data (pattern based)

activity pattern, grouping pattern, rest pattern, feed pattern

Milking stall sensors – milk yield, milk flow, milk conductivity, milk fat, protein, lactose, blood, coagulation potential

Cow sensors – activity, lying times, lying bouts

Complex biological systems

Challenge:

construct data, collect data, mine data, Develop predictive models, Validate models, construct comparative standards

Disciplines

Challenge: Pattern recognition of subjective multi dimensional data

afimilk

Descriptive : From highlighting irregularities to diagnostics

From Data Collection to Decision Making

Data --> Information --> Knowledge --> Intelligence

Arkadi Slezberg, 2009

From retrospective to prospective prediction of production

Real time measurement of milk yield and composition

AfiLab concept

 Casein, un-saturated fatty acids, saturated fatty acids, mono & poli Unsaturated fatty acids , igG count in colostrum

Predictive : From diagnotics to prediction

Different heuristic approach

From classical statistics terminology:

- Mixed models
- Decision trees
- Bayesian models

To time dependent terminology:

- Dynamic modeling
- Markovian and non-Markovian processes
- Memory stamps

J. I. Weller and E. Ezra, "Genetic and phenotypic analysis of daily Israeli Holstein milk, fat, and protein production as determined by a real-time milk analyzer", JDC, Vol. 99 No. 12, 2016

- Scope: >37,000 Holstein cows spanning over 2 years
- Finds agreement between Afimilk's inline milk lab real time analysis and between DHIA monthly tests.
- Selected for 'Editor's Choice' of JDSc

Objectives of the study

- ✓ Comparison of lactation yields between the traditional testing & Afilab
- ✓ Calculation & comparison of Predicted Transmitting Ability (PTA)
- ✓ Calculation of genetic & phenotypic correlations
- ✓ Establishing correction factors for Season, Age &
 Open Days
- ✓ Calculation of extended yield factors for cows with truncated data (partial records)

Heritabilities, genetic and environmental correlations among 7,866 first parity 305 d lactations computed from the ICBA and AfiLab records.

Trait	Heritak	pilities	Correlations				
	ICBA	AfiLab	genetic	environmental			
Milk (kg)	0.33	0.35	1.00	0.96			
Fat (kg	0.23	0.31	0.59	0.70			
Protein (kg)	0.27	0.32).86	0.87			
% fat	0.48	0.57	0.70	0.66			
% protein	0.55	0.46	0.56	0.52	+0		
Heritabilities	were nigne	ept for % p	orotein.	orus for all trai	16		

<u>Phenotypic correlations among complete and extended</u> 1st parity lactations the last ICBA test day and the last two weeks of AfiLab records.

			ГАІ	<mark>(kg)</mark>					
		Moa			at trunc	ation			
weat days in milk at truncation									
30	60	90	120	150	180	210	240	270	
0.67	0.75	0.79	0.87	0.91	0.93	0.95	0.95	0.96	
0.77	0.84	0.89	0.92	0.94	0.95	0.96	0.96	0.97	
PROTEIN (kg)									
		Mea	n days	in milk	at trun	cation			
30	60	90	120	150	180	210	240	270	
0.70	0.76	0.78	0.87	0.90	0.92	0.94	0.94	0.95	
0.72	0.83	0.87	0.90	0.93	0.94	0.95	0.95	0.96	
	0.67 0.77 30 0.70	0.67 0.75 0.77 0.84 30 60 0.70 0.76	30 60 90 0.67 0.75 0.79 0.77 0.84 0.89 Mea 30 60 90 0.70 0.76 0.78	30 60 90 120 0.67 0.75 0.79 0.87 0.77 0.84 0.89 0.92 PROT Mean days 30 60 90 120 0.70 0.76 0.78 0.87	30 60 90 120 150 0.67 0.75 0.79 0.87 0.91 0.77 0.84 0.89 0.92 0.94 PROTEIN (kg Mean days in milk 30 60 90 120 150 0.70 0.76 0.78 0.87 0.90	30 60 90 120 150 180 0.67 0.75 0.79 0.87 0.91 0.93 0.77 0.84 0.89 0.92 0.94 0.95 PROTEIN (kg) Mean days in milk at trunc 30 60 90 120 150 180 0.70 0.76 0.78 0.87 0.90 0.92	0.67 0.75 0.79 0.87 0.91 0.93 0.95 0.77 0.84 0.89 0.92 0.94 0.95 0.96 PROTEIN (kg) Mean days in milk at truncation 30 60 90 120 150 180 210 0.70 0.76 0.78 0.87 0.90 0.92 0.94	30 60 90 120 150 180 210 240 0.67 0.75 0.79 0.87 0.91 0.93 0.95 0.95 0.77 0.84 0.89 0.92 0.94 0.95 0.96 0.96 PROTEIN (kg) Mean days in milk at truncation 30 60 90 120 150 180 210 240 0.70 0.76 0.78 0.87 0.90 0.92 0.94 0.92	

SUMMARY Weller & Ezra

- ✓ The genetic values for 1st lactation cows were higher by Afilab except for % protein
- The prediction coefficients for 305 days Kgs milk, fat & protein were higher for Afilab
- ✓ The genetic & phenotypic correlations to 305 days lactation in 30 DIM are 0.75 and gradually rising to 0.98 in 240 DIM
- Prediction of complete lactation yields from partial data were more effective in Afilab

Prediction of complete lactations in Afifarm

- Our objective: To adapt the large scale retrospective study's method to a prospective prediction of complete (305_days) lactations in individual herds
 ✓ For selection
 - ✓ For production planning (quota, summer/winter)
- The operational need: To enable farmers to get the decision as early as possible, but before breeding

Waiting Periods

Herds	Cows/herd	Voluntary waiting period (days)	Days to 1 st Al
13,885	158.4 ± 325 SD	58.4 ± 5.6 SD	95.2 ± 26.9 SD

Ferguson J.D. & Skidmore A. (2013). JDS 96 (2) 1269 -1289

Days to 1 st Al	50	51 - 80	81 - 110	111 - 150
1 st lactation	0.4%	41.4%	45.2%	13.0%
2 nd lactation	9.7%	58.4%	26.9%	5.1%

Ezra E. (2013). HerdBook Summary (Hebrew). ICBA

Our objective is to be able to make the decision at 60 DIM

Predictive : From diagnotics to prediction

Early prediction of total lactation performance

Prediction calculated from 2014 data (new) compared to 2015 data (old)

- Calibration of models from cows calving in 2014 (26/01-31/12)
- > Validation of models applied cows calving in 2015
- 6 herds of Israeli Holsteins with 371 to 1046 annual calving events and 11,840 Kg to 13,635 annual milk

Criteria for Success

- R^2= RSquare of the Summary of fit
- r = Correlations to actual production
- 75% & 90%tiles of the differences between the predicted
 & actual estimates of the various traits (for planning & selection)
- Predictive Values & accuracy for selection decisions
 - ✓ <u>PPR (positive predicting value)=The probability that a cow</u> <u>defined by test as a "low yielder" is truly so</u>
 - ✓ NPR (negative predicting value)=The probability that a cow defined by test as a "high yielder" is truly so

Afimilk; Herd #3

	Milk, kg/305 days		Fat, kg/305days		Protein, Kg.305 days			ECM, kg 305 days				
	34	54	84	34	54	84	34	54	84	34	54	84
RSquare	0.683	0.726	0.786	0.704	0.737	0.704	0.653	0.698	0.768	0.717	0.753	0.804
Correlations	0.930	0.949	0.968	0.926	0.931	0.926	0.918	0.935	0.956	0.923	0.941	0.962
+tive PV	65.0%	72.2%	84.6%	47.5%	57.6%	47.5%	65.0%	80.0%	84.6%	52.9%	56.7%	76.5%
-tive PV	78.6%	79.3%	79.0%	86.1%	88.4%	86.1%	78.6%	78.7%	79.0%	83.3%	82.6%	81.0%
Accuracy	75.0%	77.6%	80.0%	65.8%	75.0%	65.8%	75.0%	78.9%	80.0%	69.7%	72.4%	80.0%
10%tile to 90%tile	-10.1% to 8.4%	-7.5% to 9.2%		-11.4% to 7.0%		-11.4% to 7.0%	-8.7% to 9.8%	-7.1% to 10.1%	-4.0% to 9.0%	-11.8% to 4.6%	-9.3% to 6.3%	-5.5% to 7.0%

Herd #3: n for 12/14-11/15=717 (34 DIM); 1,195 (54 DIM); 1,912 (84 DIM); n for 12/14-02/16=76

- Prediction of all the production variables examined improved with time from calving
- The smaller herd behaved similar to the larger one

Afilab <=34 DIM vs. 1st ICBA milk test <=34 DIM (All lactations combined)

	Milk, kg/305 d		Fat, kg/305 d		Protein, Kg.305 d		ECM, kg 30	5 d
Herd #1	Afi	ICBA	Afi	ICBA	Afi	ICBA	Afi	ICBA
RSquare	0.568	0.554	0.523	0.388	0.543	0.502	0.571	0.513
Correlations	0.858	0.800	0.866	0.727	0.845	0.784	0.860	0.777
+ve PV	75.0%	54.2%	60.6%	40.9%	71.4%	66.7%	75.0%	57.1%
-ve PV	83.1%	79.1%	87.0%	71.1%	82.8%	76.9%	83.1%	78.3%
Accuracy	81.0%	70.1%	75.9%	61.2%	79.7%	74.6%	81.0%	71.6%
10%tile to 90%tile	-9.3% to 10.3%	-10.4% to 10.7%	-10.8% to 6.8%	-14.3% to 9.8%	-9.9% to 8.7%	-12.2% to 11.2%	-9.4% to 9.9%	-9.7% to 12.3%

Prediction for milk & fat, proved superior to that of ICBA (truncation at 34 DIM)

Oded Nir (Markusfeld)

Afimilk; Afilab + Predicted Transmitting Ability (PTA) All lactations combined. Herd #3

	Milk, kg/305 days		Fat, kg/3	305days	Protein, Kg.305 days		
	DIM34	+PTA	DIM34	+PTA	DIM34	+PTA	
RSquare	0.683	0.782	0.704	0.744	0.653	0.719	
Correlations	0.930	0.942	0.926	0.927	0.918	0.935	
+tive PV	65.0%	75.0%	47.5%	51.4%	65.0%	63.6%	
-tive PV	78.6%	86.5%	86.1%	87.2%	78.6%	79.6%	
Accuracy	75.0%	82.9%	65.8%	69.7%	75.0%	75.0%	
10%tile to 90%tile	-10.1% to 8.4%	-10.2% to 5.4%	-11.4% to 7.0%	-11.1% to 9.7%	-8.7% to 9.8%	-8.1% to 7.1%	

Adding PTA to the 34 DIM models in Herd #3 proved contributed more than in the 54 DIM models. Results were not different in Herd # 1

Oded Nir (Markusfeld)

Summary & Conclusions

- Prospective prediction of complete lactations in individual herds yielded similar results to Weller & Ezra's large retrospective study
- Predictions using Afimilk in 34 DIM proved superior to those using the first Milk Test
- Though prediction improves with time in lactation, the present results allow for "safe" selection, culling & production planning at 54 DIM, and even earlier in lactation.
- ✓ Results for small & large sized herds were similar
- ✓ Current average production planning error based on ICBA data is 20%-25% using daily afilab data the error drops down 5%-7%
- Adding PTA to the models slightly improved prediction of milk & protein in early lactation

Take home message:

Not using available Daily data is a drawback to the industry.

Data reduction by averaging it is loss of information and knowledge.

