

Objective carcass measurements to improve lean meat yield and eating quality in Australian beef, sheep and pork

D.J. Brown, D.W. Pethick, P. McGilchrist, C.K. Ruberg ,W.S Pitchford, R. Apps, G.E. Gardner

Speaker: Daniel Brown

Australian Government Department of Agriculture and Water Resources Rural Research and Development for Profit Programme Keeping Australian farmers at the culting edge

Objective Carcass Measurement to Improve Lean Meat Yield and Eating Quality in Australian Beef, Sheep and Pork

Daniel Brown, David Pethick, Peter McGilchrist, Christian Ruberg, Wayne Pitchford, Richard Apps and Graham Gardner

This project is supported by funding from the Australian Government Department of Agriculture and Water Resources as part of its Rural R&D for Profit programme in partnership with Research and Development Corporations, Commercial Companies, State Departments and Universities.

Precision measurement from paddock/pen to plate

• Predict quality and amount of final product

Massive variation is quantity and quality of carcasses at all points

Potential Gross Benefit of objective measurements ~\$420M/ann by 2030, with 65% LMY <DEXA>, and equally shared between producer / processor.

Current trading in beef and lamb

• Traded largely

on carcass weight

• Fat penalties only at the extremes

Extra precision gives more accurate (and wider) differentiation of carcase value

What does extra precision mean for the carcase calculator?

Trading on Eating Quality

Meat Standards Australia eating quality model

Description	Format	Name	Input	?	Aged	cut muscle	GRL	RST	SFR	TSL	SCT	CRN
timated % Bos Indicus	% or X if doubt	EPBI	0			spinalis SPN081	79	69	79	75		
Animal Sex Type	M/F	Sex	F			tenderloin TDR034	82		76			
ne Growth Promotent	Yor?/N	HGP	n			tenderloin TDR062	78	77	80	74		
MilkFedVealer	Y/N	MEV	n			tenderloin TDR063	73					
t St L ys					D	oesr	ז't	Ee	xi	st		
					fc	or lar	n	b!				5
		1:1)~	1		fc	thin-flank TFL052	n	b!	67	59	64	5
					fc	thin-flank TFL052 thin-flank TFL064	n	b!	67 61	59 58	64 60	
)		fc	thin-flank TFL052 thin-flank TFL064 rib-blade RIB041	n	b!	67 61 48	59 58	64 60	
					fc	thin-flank TFL052 thin-flank TFL064 rib-blade RIB041 brisket BR1056	n	b!	67 61 48 44	59 58 58	64 60 64	38
	TUSTO			ſ	fc	thin-flank TFL052 thin-flank TFL064 rib-blade RIB041 brisket BR1056 brisket BR1057 schin FQshin	n	b!	67 61 48 44 41	59 58 58 49	64 60 60 64 57	38
	TUSTR	ALLA	/		fc	thin-flank TFL052 thin-flank TFL064 rib-blade RIB041 brisket BR1056 brisket BR1057 shin FQshin shin HQshin		b!	67 61 48 44 41	59 58 58 49	64 60 64 57 60	38

Loin Eating Quality and HSCW

100

Hot Standard Carcass Weight (kg)

The Genetics Business Case

Breeding for yield and eating quality: Sheep Genetics

Australian Government

Department of Agriculture and Water Resources Rural Research and Development for Profit Programme Keeping Australian farmers at the outling edge

Advanced Livestock Measurement Technologies

This project is supported by functing from the Australian Sovernment Department of Agriculture and Waser Resources as part of its Rules R&D for Profit programme in partnership with Research & Development Corporations, commercial companies, state departments and universities.

2D X-Ray for driving robots Scott Technology

DEXA – Technology, Algorithm and LMY Correlation

		$(x+a)^n = \sum_{k=0}^n \binom{n}{k} x^k a^{n-k}$	
Beef	> 1,500,000 sides	104 sides	R ² > 0.88
		$(x+a)^n = \sum_{k=0}^n \binom{n}{k} x^k a^{n-k}$	
Lamb	> 3,000,000 carcasses	600+ carcasses	R ² > 0.90
Тес	chnology	Algorithm	Correlation

DEXA predicting CT Fat% in lamb

Predicting CT Composition in Beef

On-Farm Yield Prediction

- 3D Red, Green, Blue, + Depth (RGBD - xbox) camera technology
- Trialed to show great ability to assess body condition score

What about quality - Hyper MIJ Camera

What about quality - Hyper spectral imaging

What we think it can grade:

- Eye muscle area
- IMF (marbling scores)
- Meat / Fat colour
- Subcutaneous fat
- Ossification

Other Technologies

- NIR
- CT / Cone Beam / Flat Panel CT
- NMR/MRI
- Aviation CT

Others Characteristics

- Rib count
- Dimensions
 - Muscularity
 - Shape
- Age / Maturity

Other Factors being studied

- Slaughter factors
 - Spray chilling
 - Carcass orientation (180 degree turn)
 - Carcass temperature
 - Time post mortem

- Fixed effects
 - Sex, breed, age, finishing system

Producer feedback Meat:Fat:Bone Carcass

ody	RFID		AUS-M	EAT FEEDBA	ЧСК	~ ~		Carcase Right Side					Carcase Left Side	
88		Species	Fat	Dentition	Sex	Bruise	Offal	Side				Side		
		90	Depth			Score	Dowgrade	Weight (kg)	(S/kg)	Meat (%)	Fat (%)	Bone (%)	Weight (kg)	(\$/kg)
1	95494361336	В	15	2	М	2	N	211.0	5.88	55%	14%	31%	213.1	5.85
2	95494354624	в	15	5	М	3	N	226.0	5.86	56%	13%	31%	226.0	5.90
3	95494355548	В	20	0	M	6	N	318.0	5.89	54%	15%	31%	321.2	5.85
4	95494354624	в	21	4	м	8	N	314.0	5.90	55%	14%	31%	314.0	5.89
5	95494362022	В	20	8	М	2	N	218.0	5.85	59%	12%	29%	220.2	5.81
6	95494354624	в	19	4	М	3	N	247.0	5.90	53%	15%	32%	249.5	5.88
7	95494362247	в	16	8	М	9	N	261.0	5.84	56%	15%	29%	258.4	5.89
8	95494354624	в	14	8	M	3	N	269.0	5.90	55%	12%	33%	266.3	5.90
9	95494363697	В	22	3	М	7	N	239.0	5.82	58%	12%	30%	236.6	5.90
10	95494354624	В	12	5	M	9	N	341.0	5.81	53%	16%	31%	337.6	5.83
11	95494360856	В	11	4	М	1	N	194.0	5.88	54%	13%	33%	192.1	5.90
12	95494354624	В	15	1	М	6	N	246.0	5.86	59%	12%	29%	248.5	5.82
13	95494359273	В	16	5	M	3	N	277.0	5.83	55%	14%	31%	279.8	5.81
14	95494354624	В	9	7	M	4	N	197.0	5.87	55%	15%	30%	199.0	5.81
15	95494360585	В	15	4	M	1	N	202.0	5.80	54%	16%	30%	204.0	5.88
16	95494354624	В	21	3	М	1	N	262.0	5.87	52%	15%	33%	259.4	5.86
17	95494360162	В	20	1	M	1	N	206.0	5.86	58%	13%	29%	208.1	5.90
18	95494354624	8	16	8	M	1	N	336.0	5.89	54%	14%	32%	336.0	5.80
19	95494361988	В	15	5	M	6	N	251.0	5.82	54%	16%	30%	253.5	5.87
20	95494354624	8	18	2	M	9	N	330.0	5,80	52%	15%	33%	333.3	5.89

Processor utilisation

- Carcass calculators (Beef and Sheep)
 - Retail cut value
 - Value based marketing
- Predict processing costs / wastage
- Optimise carcass usage and market volumes

AUSMEAT, Calibration & Industry Standardisation

$$(x+a)^n = \sum_{k=0}^n \binom{n}{k} x^k a^{n-k} \qquad \clubsuit$$

DEXA inside™ (industry standard) Algorithm (Beef & Sheep) (Industry std. & Industry IP) Calibration block (industry standard)

industry data/trait/identification standards vital

Genetic Carcass Data from Commercial Slaughter

Requirements

- Valid groups (true contemporaries)
- Animals must not been "harvested" from the feedlot pen or grass finished mob
- Must have relevant fixed effects (birth dates, litter size, sex etc?)
- Pedigree (DNA)
- Sires randomly mated
- Effective progeny numbers

Industry data flow

Conclusions

- Existing carcass measurement is poor
- DEXA lamb carcass composition
- Beef DEXA promising
- EQ important but not yet clear
- ALMTech will accelerate development
- Beef, lamb, pork industries
- ICAR guidelines

Supporting partners

Australian Government Department of Agriculture and Water Resources

