

Collecting milking speed data as part of official milk recording

R.H. Fourdraine, H.A. Adams, A.D. Coburn

Speaker: Robert Fourdraine

Collecting milking speed data as part of official milk recording

R. H. Fourdraine¹, H.A. Adams¹, A.D. Coburn²

¹ CRI International Center for Biotechnology, 2706 County Road E, Mount Horeb, WI ² AgSource Cooperative, 135 Enterprise Drive, Verona, WI

Introduction

- Increased adoption of robotic milking systems in the U.S.
- Maximize milk collected through the robot
 - Amount of milk
 - Time to milk
 - Prep time
 - Time to move cow in and out of the robot
 - Attaching the milking unit
- Similar concept applies to conventional parlors milking 24/7
- Use of in parlor electronic milk meters
 - Maintenance and calibration

- Cost

Introduction

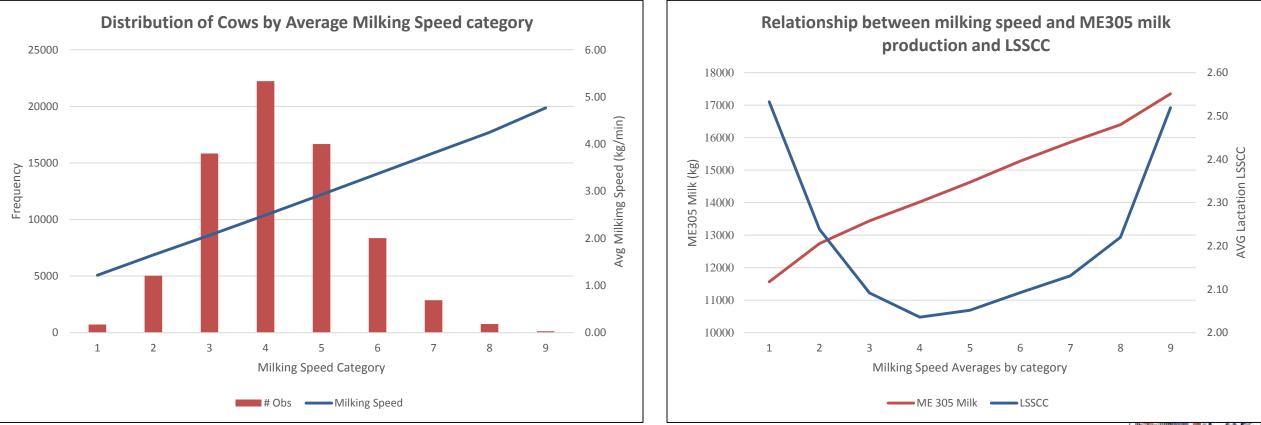
- AgSource use of Electronic Milk Meters
 - Milk weights
 - Milk samples
 - RFID sample identification
- NEW: Collect milking duration
 - Started in 2015
 - 100 herds with over 100,000 cows
- How can we use milking speed data?
 - Herd management report
 - Breeding Values

Materials and Methods

- AgSource DRPC testday and lactation data
 - Milk yield, components, SCC, pedigree,....
 - Over 900,000 individual milking time records
- Data quality
- Genetic evaluations
 - Data set included >3,200 bulls and >35,000 female records
 - Access to >100,000 genotypes
 - Breeding values estimated using BLUPF90 and variance components calculated using AIREML within BLUPF90 (Misztal et al., 2015).

overative Resources

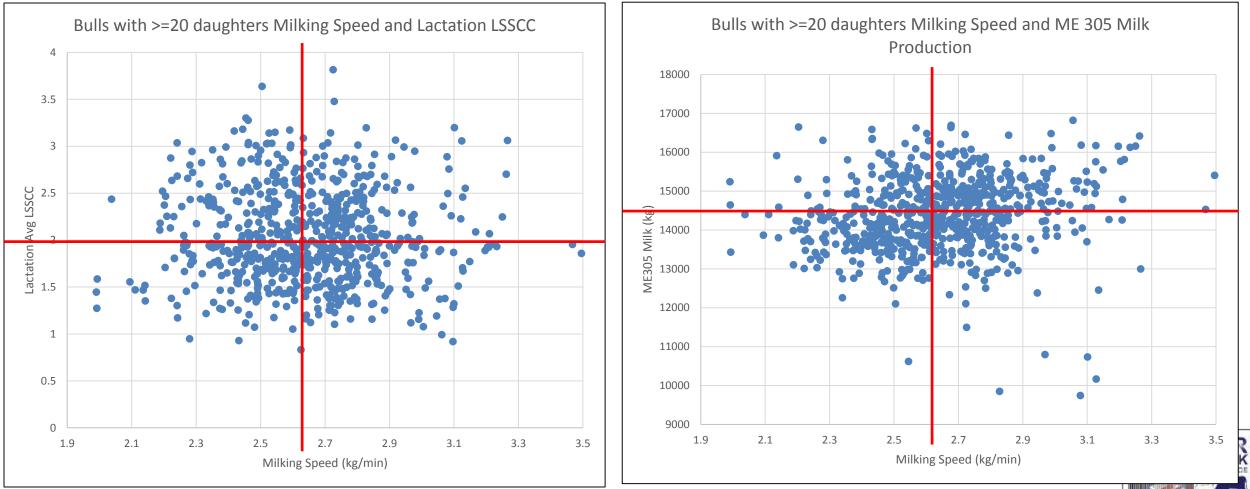
Results and Discussion


- Data Quality
 - Suspect records only 1.4% of overall dataset:
 - <0.45 kg/min or >6.8 kg/min
 - Milking duration >15 minutes
- Data Variability
 - 2.6 kg/min average

	Milking Speed (kg/min)	Standard Deviation (kg/min)
1 st Quartile	1.9	0.4
2 nd Quartile	2.4	0.5
3 rd Quartile	3.1	0.6
4 th Quartile	3.4	0.6

Results and Discussion – Milking Speed Analysis

Results and Discussion – Producer Benefit


				Grou	up/Pen	Lactation			Test	t Day	
			# of Milking		Avg Milk						Milking
			Times	Avg Milk	Duration	Avg Milk	Days In	Milk		Avg	Duration
	Control #	Lact #	Collected	(kg/min)	(min)	(kg/min)	Milk	(kg)	LSCC	Milk/Min	(Min)
	5	2	3	2.58	5.07	2.37	454	54.9	2.7	2.55	7.3
	8	2	2	2.58	5.07	4.11	239	37.2	2.9	4.23	3
	10	3	1	2.58	5.07	3.96	40	54.9	4.6	3.96	4.7
	77	4	2	2.58	5.07	1.90	278	20.0	2.2	2.06	3.3
	84	2	3	2.58	5.07	2.89	199	41.3	2.9	2.70	5.2
	102	4	4	2.58	5.07	1.58	163	38.6	2.8	1.60	8.2
	118	2	1	2.58	5.07	2.65	29	56.2	0	2.65	7.2
	127	2	1	2.58	5.07	2.32	325	30.8	6.7	2.32	4.5
	130	3	4	2.58	5.07	1.76	395	37.2	5.9	1.76	
	131	1	3	2.58	5.07	2.29	172	28.1	0	2.38	4 U
2	132	1	3	2.58	5.07	1.96	103	33.6	0	2.10	5.4

Please up not copy of distribute without permission of e

C

Results and Discussion – Bull Distribution

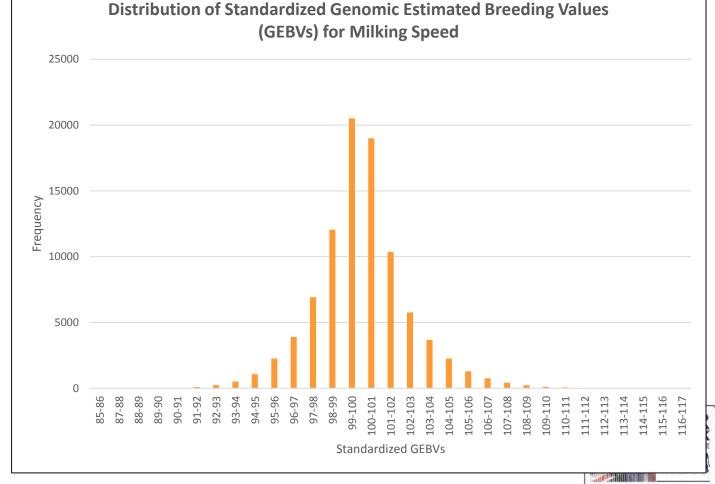
© 2017 Cooperative Resources International All Rights Reserved. Confidential and Proprietary Please do not copy or distribute without permission of CRI

Results and Discussion – Genetic Evaluations

Fixed Effects:

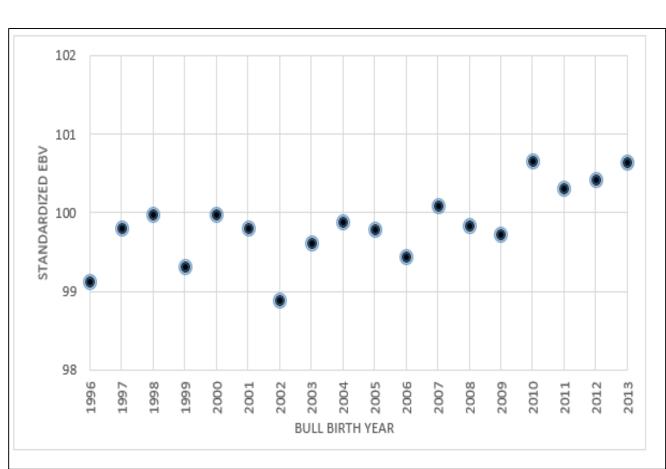
- Meter milk (kgs of milk produced at the current milking)
- Linear somatic cell score
- Herd Year of calving Month of calving (HYM)
- Lactation (1 to 4)
- Days in milk (DIM)

Random Effects:


- Cow
- Permanent environment (PE): non-genetic effect assumed to be common to all observations on the same cow

ICAR 2017 UK Con FERENCE

Results and Discussion – Genetic Evaluations


	Variance Est	Var SE
Additive (animal)	0.3630	0.0199
PE	0.4349	0.0161
Residual	1.2204	0.0031
Total	2.0183	
Heritability	17.99%	
Repeatability	39.53%	

Results and Discussion – Genetic Evaluations

RegNo	# Obs	# Daughters	StGEBV	REL
HOUSA000137191143	3896	369	100	0.98
HOUSA000062072898	3446	326	99	0.97
HOUSA000060845420	3240	285	101	0.97
HOUSA000136278496	3237	284	97	0.97
HOUSA000061898423	2735	241	98	0.96
HOUSA000066591071	2124	226	99	0.96
HOUSA000062297934	2230	224	94	0.96
HOUSA000052774524	2575	217	112	0.96
HOUSA000064541656	2341	212	98	0.96
HOUSA000060597003	2518	207	100	0.96

Conclusions

- EMM Milking speed data provides a valuable tool for milk recording organizations
 - Value added
 - Consistent and high quality
 - Management use
 - Genetic Evaluations

