

Automating the dairy farmer? Understanding the barriers to uptake and use of precision technology in dairy systems

D. McConnell

Speaker: Debbie McConnell

Automating the dairy farmer: understanding the barriers to uptake and use of precision technology in dairy systems

Dr Debbie McConnell

www.afbini.gov.uk

Precision technology – a changing world

- Emergence of a data-sharing world
- Agriculture provides a perfect host for precision technologies
- Ability to drive sustainability in dairy production systems:
- Feeding
- Nutrients
- Labour
- Technology adoption rates remain relatively low in dairy systems

Study aim

How can we make the most out of precision technology in the dairy sector?

- Factors limiting uptake of precision technology?
- Why people were investing?
- How were they ensuring they were getting the most out of the technology?

- >70 interviews with:
 - Industry
 - Technology manufacturers
 - Farmers
 - Researchers

Factors limiting adoption?

- Limited evidence base on costbenefit of technology
 - Lack of resource
 - Financial
 - Time

٠

Factors limiting adoption?

- Limited evidence base on costbenefit of technology
- Lack of resource
 - Financial
 - Time
- Easy of use
 - Skills base on farm
 - Off-farm support network

45% of UK dairy farmers felt that having better ICT skills was required to embrace use of technology(DEFRA, 2012)

Why were people investing?

- Curious
- Wanted to be ahead of the game/ new challenge
- Labour saving/Quality of life
- Better management of business

What did they look like?

- Younger (with older generation providing strategic/financial support)
- Achieved higher level education
- Multiple business enterprises – spread financial risk

How was technology performing on farm?

I'm not sure, I think it's a better system, it's got much more data and it cost a lot of money! My herd fertility is good now but I'm not sure what it was like before

I am not sure what the best metrics are to measure against, I look at what the sales person told me Long-term, yes we'd consider more robots but we want to get this working correctly first

Measure to Manage?

Investing in technology brings greater measurement, not necessarily about the better management

Adaption process

Phases of the learning trajectory of new precision dairy farmers (adapted from Eastwood et al.2012)

3 - 6 months

Early learning

Basic data entry, creating simple groups, descriptive and responsive activity

6 – 12 months

Consolidation phase

Task repetition leading to knowledge consolidation, building data interpretation skills 12 months +

Advanced learning

Combining different data to give more effective decision support processes, tailored to specific needs, additive benefit to farm

Opportunity for true cost-benefit assessment

Adaption process

Phases of the learning trajectory of new precision dairy farmers (adapted from Eastwood et al.2012)

3 - 6 months	6 – 12 months	Lack of:	12 months +		
Early learning	Consolidation phase	Data skills	Advanced learning		
Basic data entry, creating simple groups, descriptive and responsive activity	Task repetition leading to knowledge consolidation, building data interpretation skills	Strategic Guidance	Combining different data to give more effective decision support processes, tailored to specific needs, additive benefit to farm Opportunity for true cost-benefit assessment		
			6		

Building the skills base

- Recognising the skill set required on farm is changing – data management and interpretation a key requirement (££)
 - Making precision agriculture more accessible at an earlier age

Providing strategic guidance

- Nick and Rebecca Dornauf, Gala Dairies, Tasmania
- Voluntary access, 4-way grazing system
 - Started in 2010
- 600 cows (400 spring, 200 autumn)
- 8000kg milk/cow/year

Providing strategic guidance

"We felt quite alone, we didn't know if what we were doing was right or how we compared to other robot farms"

- Need for clear KPIs when implementing precision technology
- Greater sharing of data across technology

International AMS KPI Project - Average farm information

Auto atta

The Fast International Automatic Milliong Systems KPI Project provides the International Dairy Industry community with say Information of what is activated and/or community conditions, Information associated, production, 2003 williadon and term dismographics will have a first production of the activation of the activ

A total of 10 farms are being monitories: 12 from Australia, 2 fran Hew Zealand, 4 from Indunt and 1 from Onlin.

Table 1: the 6 information.

	ALL AND Farms						
	Minimum	Aterapy	the strength	Assistation AMS Forms	New Josephs AME Parms	Intel AMS Parma	Chilson AMS Farm
Speek in web (M)	61	10	200	185	11:	98	310
mattern (N)	78	10%	52%	22%	38%	20%	39%
Animate that paived (4)	4		43	- 18	1		43
Parint administration in the summittee	8.4	2.8	. 4.8	10	4.9	3.0	2.2
Robot stucking non Undarg sourcestate)	18	- 44	14 ·	47	30.	- #E	19
District (18	174	284	189	768	171	146

Table 2: 2ally rolls production and potting

	ALL AND Farms						
	Minimum	Average	Masmuny	Australian AME Fatma	New Zealand AME Farma	Wah AMS Parent	Chilean AMS Farm
Date with piceleastern (highlay)	11	3,002	4,427	3,837	946	3,943	1.642
fait[%]	18	-8.1	8.8	40	47	4.0	8,38
Prototo (%)	3.2	2.4	2.8	11	10	3.4	5.84
Secula and annual (2000)	48	198	802	101	322	113	29

www.dpl.nsw.pov.ee

Using technology to drive grassland production and utilisation

- Grassland agriculture will be pivotal to ensuring sustainable N.I. dairy, beef and sheep industries
 - Significant volatility in price and availability of imported feedstuffs
 - Environmental and social concerns

Significant financial benefit to improving grass growth and utilisation

+£204/ha

(Mayne and Bailey, 2016)

Changing our understanding of the grazing environment: AFBI Precision Grassland Platform

 High-tech research platform which enables the collection of detailed information on soil, plant and animals

Changing our understanding of the grazing environment: AFBI Precision Grassland Platform

• Supported by network of farmer co-researchers providing on-farm test bed for new technologies but also key group for sharing experiences and developing KPIs

Summary

- Need to move from technology centric view to user centric view of precision agriculture
- Technology allows us to measure but not necessarily manage. Need to address skills gap on farm and offer appropriate industry support.
 - Further integration required between research and technology developers to build appropriate KPI's for technology
- Significant scope to drive grassland production and utilisation with precision technology but farmer engagement key

