ON-FARM RECORDING OF NOVEL TRAITS – GENETIC PARAMETERS AND RECOMMENDATIONS

K. Zottl1, A. Koeck2, B. Fuerst-Waltl3, C. Pfeiffer3, F. Steininger2, L. Gruber4, M. Ledinek3, C. Fuerst2, C. Egger-Danner2

1 LKV Austria, Dresdner Str. 89, 1200 Vienna, Austria
2 ZuchtData EDV-Dienstleistungen GmbH, Dresdner Str. 89/19, 1200 Vienna, Austria
3 University of Natural Resources and Life Sciences, Dept. Sustain. Agric. Systems, Div. of Livestock Sciences, Gregor-Mendel-Str. 33, 1180 Vienna, Austria
4 Agricultural Research and Education Centre, Raumberg 38, 8952 Irdning-Donnersbachtal, Austria
Overview

• On-farm data recording in project “Efficient Cow“
• Results on body weight (BW), body condition score (BCS) and lameness score (LSC)
• Results on claw health
• Results on metabolism
• Results on feed efficiency traits collected on-farm
• Lessons learned from on-farm-recording of novel traits
Efficient cow project (2012-2016)

- Elaboration of efficiency parameters
- Evaluation of the optimal body weight to achieve the highest nutrient and energy efficiency
- Analyses of genetic possibilities to improve production efficiency
- Relationship between efficiency and functional traits
- Analyses of environmental impact of cattle production under Austrian conditions
Approach – field data for novel traits

- **Preselection of farms** with higher degree of phenotype recording (AMS, health recording,..)

- **Distribution** of farms across different **production conditions** and levels of intensity in Austria

- Extended data recording on-farm on **170 farms in Austria** with app. 5,500 cows for one year (1.1.2014 – 31.12.2014)
 - 3,200 Fleckvieh (Simmental)
 - 1,200 Brown Swiss
 - 1,100 Holstein

- Comparison with data of limited number of cows from **research stations**
Data recorded

- General information about farm (housing, feeding, ...)
- Recording of direct health data (veterinarian diagnoses)
- Documentation of claw trimming
- BHB (β-hydroxybutyrate) test for ketosis
- Linear scoring of all cows across lactations
- At each time of milk recording in 2014
 - Body weight, body measures, body condition score, lameness scoring
 - diet and estimation of feed intake
 - Routine information about milk recording + MIR-spectra
- Austrian main breeds
 - Fleckvieh / Simmental (FL), Brown Swiss (BS), Holstein (HF)
Observed data – Fleckvieh / Simmental

<table>
<thead>
<tr>
<th></th>
<th>COWS</th>
<th>N</th>
<th>LACT 1</th>
<th>LACT 2</th>
<th>LACT ≥3</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEIGHT</td>
<td>3984</td>
<td>29,763</td>
<td>685 (±79)</td>
<td>734 (±83)</td>
<td>776 (±84)</td>
</tr>
<tr>
<td>WAIST</td>
<td>3981</td>
<td>30,031</td>
<td>251 (±14)</td>
<td>259 (±14)</td>
<td>265 (±13)</td>
</tr>
<tr>
<td>CHEST</td>
<td>3982</td>
<td>30,039</td>
<td>208 (±10)</td>
<td>212 (±10)</td>
<td>217 (±10)</td>
</tr>
<tr>
<td>MUSC 1-9</td>
<td>3977</td>
<td>29,866</td>
<td>5.58 (±1.21)</td>
<td>5.72 (±1.33)</td>
<td>5.89 (±1.4)</td>
</tr>
<tr>
<td>BCS 1-5</td>
<td>3981</td>
<td>30,044</td>
<td>3.32 (±0.52)</td>
<td>3.33 (±0.55)</td>
<td>3.37 (±0.62)</td>
</tr>
<tr>
<td>LAME 1-5</td>
<td>3981</td>
<td>29,768</td>
<td>1.13 (±0.43)</td>
<td>1.2 (±0.52)</td>
<td>1.42 (±0.77)</td>
</tr>
</tbody>
</table>
Body weight

• In Austria standard housing systems for dairy cows are without equipment for weighing routinely.

• During the observation period of the project “Efficient Cow”, all cows were weighed at each time of milk recording.
Lameness score (Sprecher et al. 1997)

Efficient Cow:
Lameness was recorded by trained staff from the milk recording organisations at each milk recording using the scoring system (Sprecher et al. 1997) with 1 = normal to 5 = severely lame.
Body condition score (BCS) (Edmonson et al. 1989)

Recorded at each milk recording by trained stuff. BCS 1= severe underconditioning; BCS 5 = severe overconditioning
Test for subclinical ketosis

Cows within “Efficient Cow” tested at day 7 and day 14 after calving with β-hydroxybutyrate (BHB μmol/l) milk test

- % of ketosis suspicious cows (>=100μmol/l) → 44 % !!
- % of ketosis suspicious cows (>=200μmol/l) → 14 % !!
Feeding information and feed efficiency

• Recorded on animal basis at each milk recording (Ledinek et al. 2016)
• Feed intake estimated using the model of Gruber et al. (2004)
• Dairy cow rations and forage analyses were included
• Dry matter intake (DMI) and energy intake (INEL) was calculated for each day of milk recording for each cow
• **Feed efficiency** was calculated as:
 • ECM_BWx: energy corrected milk related to metabolic body weight
 • ECM_DMI: ECM related to feed intake
 • LE_INEL: lactation energy related to energy intake
Overview

• On-farm data recording in project “Efficient Cow“
• Results on body weight (BW), body condition score (BCS) and lameness
• Results on claw health
• Results on metabolism
• Results on feed efficiency traits collected on-farm
• Lessons learned from on-farm-recording of novel traits
Heritabilities and genetic correlations (Koeck et al. 2016) – Fleckvieh (Simmental)

<table>
<thead>
<tr>
<th></th>
<th>Body weight</th>
<th>BCS</th>
<th>Lameness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body weight</td>
<td>0.44 (0.05)</td>
<td>0.39 (0.08)</td>
<td>0.57 (0.13)</td>
</tr>
<tr>
<td>BCS</td>
<td></td>
<td>0.22 (0.03)</td>
<td>0.05 (0.15)</td>
</tr>
<tr>
<td>Lameness</td>
<td></td>
<td></td>
<td>0.07 (0.02)</td>
</tr>
</tbody>
</table>

Heavier cows have an increased risk of lameness
Overview

• On-farm data recording in project “Efficient Cow“
• Results on body weight (BW), body condition score (BCS) and lameness score (LSC)
• **Results on claw health**
• Results on metabolism
• Results on feed efficiency traits collected on-farm
• Lessons learnt from on-farm-recording of novel traits
Traits available for claw health

• Veterinarian diagnoses from routine health monitoring
• Claw trimming data
• Lameness scores (Sprecher et al. 1997) at each milk recording by trained stuff
 • LSC - overall lactation lameness score was calculated per cow and lactation taking the frequency of different severity cases into account. The score ranges between 0 and 4 (Burgstaller et al. 2016).
• Culling information
Heritabilities and genetic correlations (Fleckvieh Simmental)

<table>
<thead>
<tr>
<th>Trait</th>
<th>No Obs.</th>
<th>Mean</th>
<th>h^2 (se)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Claw diagnoses (0/1)</td>
<td>6,427</td>
<td>0.016</td>
<td>0.025 (0.021)</td>
<td>0.568 genetic correlation to LSC; 0.827 to claw trimming; 0.99 to culling</td>
</tr>
<tr>
<td>LSC (0-4)</td>
<td>2,963</td>
<td>0.994</td>
<td>0.095 (0.092)</td>
<td></td>
</tr>
<tr>
<td>Claw trimming (0/1)</td>
<td>2,451</td>
<td>0.51</td>
<td>0.042 (0.013)</td>
<td></td>
</tr>
<tr>
<td>Culling (0/1)</td>
<td>9,666</td>
<td>0.005</td>
<td>0.007(0.006)</td>
<td></td>
</tr>
</tbody>
</table>
Summary – novel traits claw health

- Lameness scores can be used as auxiliary traits for genetic improvement of claw health (depending on model and trait definition – heritability between 0.07 and 0.095)
- Heritability based on claw trimming data lower than in most other studies (0.042) (reason could be that data were recorded from trained claw trimmers and farmers in this study)
- Heritabilities of veterinarian diagnoses low (0.025), but available on a wide range of animals in Austria; but it covers only severe cases

Different data sources related to claw health can be used
Overview

- On-farm data recording in project “Efficient Cow“
- Results on body weight (BW), body condition score (BCS) and lameness score (LSC)
- Results on claw health
- **Results on metabolism**
- Results on feed efficiency traits collected on-farm
- Lessons learnt from on-farm-recording of novel traits
Metabolic disorders

- **Body condition score (BCS)**
 - Together with body weight
 - by trained technicians at each milk recording.

- **Metabolic disorders**
 An issue of growing concern
 - veterinarian diagnoses
 - indicator traits for subclinical ketosis cases:
 - **Milk test** (Elanco) at day 7 and 14 after calving (determination of β-hydroxybutyrate (BHB) concentrations).
 - **Body condition and fat-protein-ratio:**
 - BCS1 and F:P1
 BCS and fat-protein-ratio at the first recording after calving and
 - **BCS1DIFF**
 difference in BCS between the first and second recording after calving
Heritabilities and genetic correlations

<table>
<thead>
<tr>
<th>Trait</th>
<th>No Obs.</th>
<th>Mean</th>
<th>(h^2) (se)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metabolism vet. diagnoses (-100d) (0/1)</td>
<td>5670</td>
<td>0.048</td>
<td>0.028 (0.013)</td>
<td>0.59 genetic correlation to ketotest; -0.55 genetic correlation BCS1; 0.56 genetic correlation to BCS1Diff</td>
</tr>
<tr>
<td>Ketotest/Subcl. ketosis (0-2)</td>
<td>1,805</td>
<td>0.56</td>
<td>0.064 (0.026)</td>
<td></td>
</tr>
<tr>
<td>BCS1</td>
<td>2,491</td>
<td>3.331</td>
<td>0.161 (0.040)</td>
<td></td>
</tr>
<tr>
<td>BCS1DIFF</td>
<td>2,169</td>
<td>-0.147</td>
<td>0.042 (0.026)</td>
<td></td>
</tr>
<tr>
<td>F:P1</td>
<td>7,187</td>
<td>1.281</td>
<td>0.138 (0.026)</td>
<td></td>
</tr>
</tbody>
</table>
Overview

- On-farm data recording in project “Efficient Cow“
- Results on body weight (BW), body condition score (BCS) and lameness score (LSC)
- Results on claw health
- Results on metabolism
- **Results on feed efficiency traits collected on-farm**
- Lessons learnt from on-farm-recording of novel traits
Feeding information and feed efficiency

- Recorded on animal basis at each milk recording (Ledinek et al. 2016)
- Feed intake estimated using the model of Gruber et al. (2004)
- Dairy cow rations and forage analyses were included
- Dry matter intake (DMI) and energy intake (INEL) was calculated for each day of milk recording for each cow
- Feed efficiency was calculated as:
 - ECM_BWx: energy corrected milk related to metabolic body weight
 - ECM_DMI: ECM related to feed intake
 - LE_INEL: lactation energy related to energy intake
Heritabilities and genetic correlations

<table>
<thead>
<tr>
<th></th>
<th>ECM</th>
<th>BW</th>
<th>DMI</th>
<th>INEL</th>
<th>ECM_BWx</th>
<th>ECM_DMI</th>
<th>LE_INEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECM</td>
<td>0.13</td>
<td>-0.22</td>
<td>0.66</td>
<td>0.72</td>
<td>0.88</td>
<td>0.89</td>
<td>0.89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.10)</td>
<td>(0.06)</td>
<td>(0.06)</td>
<td>(0.02)</td>
<td>(0.02)</td>
<td>(0.03)</td>
</tr>
<tr>
<td>BW</td>
<td>0.43</td>
<td>0.50</td>
<td>0.40</td>
<td>-0.66</td>
<td>-0.66</td>
<td>-0.57</td>
<td>-0.56</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.07)</td>
<td>(0.08)</td>
<td>(0.06)</td>
<td>(0.08)</td>
<td>(0.08)</td>
<td></td>
</tr>
<tr>
<td>DMI</td>
<td>0.18</td>
<td>0.99</td>
<td>0.27</td>
<td>0.37</td>
<td>0.27</td>
<td>0.24</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.01)</td>
<td>(0.10)</td>
<td>(0.10)</td>
<td>(0.10)</td>
<td>(0.10)</td>
<td>(0.11)</td>
</tr>
<tr>
<td>INEL</td>
<td>0.13</td>
<td></td>
<td>0.37</td>
<td>0.33</td>
<td>0.37</td>
<td>0.33</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.10)</td>
<td>(0.10)</td>
<td>(0.10)</td>
<td>(0.10)</td>
<td>(0.11)</td>
</tr>
<tr>
<td>ECM_BWx</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.18</td>
<td>0.97</td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.01)</td>
<td>(0.01)</td>
<td>(0.01)</td>
</tr>
<tr>
<td>ECM_DMI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.01)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LE_INEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.11</td>
</tr>
</tbody>
</table>
Conclusions for practical implementation

- Data recording from about 5,300 cows under on-farm-conditions was a big challenge
- Recording of body weight was easier to handle than taking different body measures
- Body condition score and lameness score are interesting management tools but also usable for genetic evaluation
- Genetic correlation between ECM, DMI and BW from on-farm-data comparable to results from station-data
- Practical use of diet information would need also reliable information (especially on concentrates) and detailed information on mobilization
- Body weight has high impact on feed efficiency
Acknowledgement

Federal Ministry of Agriculture, Forestry, Environment and Water Management (BMLFUW) in Austria, Federal States of Austria and the Federation of Austrian Cattle Breeders for the support within the projects “Efficient cow“.

Project partner within the project “Efficient Cow“.

Comet project ADDA “Adjustment of Dairying in Austria“. Gene2Farm (EU-FP7-KBBE-2011-5-PNr.: 289592).
Thank you!