Beef cattle genetic evaluation in Australia ~ BREEDPLAN

Robert Banks AGBU

Aims:

- Increase rate of progress in bull-breeding herds
- Bull-buyers have information (EBVs and \$Indexes)
- Bull-buyers and users have knowledge and tools to harvest value from genetics

Australian beef industry:

- c. 10m commercial cows, c. 0.25m stud cows
- c. 50,000 commercial producers, c. 1,500 studs
- Very little AI in commercial herds
- Focus of genetic evaluation is on:
 - Selection of replacement sires (bulls to breed bulls) and heifers
 - Objective information on herd bulls, typically sold at 15-18 mths
- 2 broad production regions:
 - Southern Australia (cooler, higher rainfall, beef usually not main enterprise)
 - Northern Australia (hotter, dryer, beef usually only enterprise)
- 3 broad types or sectors:
 - Southern dual-purpose (British breeds eg Angus, Hereford)
 - Terminal sire (Charolais, Limousin, Wagyu)
 - Northern (Brahman, Tropical Composite)

AGBU

- Joint venture of UNE and NSW DPI, initiated in 1976
- 25 staff (17 PhDs, 3 students, 5 professional staff, + visiting scientists)
 - Beef team: 12
- Focus on genetic and genomic analysis and evaluation

AGBU Contribution:

- All the development work for BREEDPLAN (and Sheep Genetics, PIGBLUP, TREEPLAN)
- Ongoing support for BREEDPLAN delivery
- Ongoing R&D:
 - analytical software
 - Models, genetic parameters
 - New traits
 - Implementation (reference populations, breeder workshops)

Using BREEDPLAN

- Owned and developed by the Australian beef industry
- Used by all major breeds in Australia (and several overseas)
- 145,000 new animals evaluated each year
- AGBU conducts the R&D for BREEDPLAN
- ABRI delivers BREEDPLAN:
 - user pays, at c. \$AUD7.50 per new animal
 - Provides breed services to breeds in Australia, and to some overseas
- Funding for R&D c. 50:50 industry (levies) and government

Australian breeds conducting a BREEDPLAN Evaluation

- 1. Angus
- 2. Shorthorn
- 3. Belmont Red
- 4. Blonde d'Aquitaine
- 5. Braford
- 6. Brahman
- 7. Brangus
- 8. Charbray
- 9. Charolais

- 10. Devon
- 11. Droughtmaster
- **12.** Galloway
- 13. Gelbvieh
- 14. Hereford / Poll Hereford
- 15. Limousin
- 16. Lowline
- 17. Murray Grey
- 18. Red Angus

- 19. Red Poll
- 20. Salers
- 21. Santa Gertrudis
- 22. Senepol
- 23. Shaver Beefblend
- 24. Simmental
- 25. South Devon
- 26. Wagyu

BREEDPLAN Traits

Growth	Fertility	Carcase	Other
Birth Weight Milk 200-day Growth 400-day Weight 600-day Weight Mature Cow Weight	Scrotal Size Days to Calving Gestation Length Calving Ease	Carcase Weight Eye Muscle Area Rib Fat Depth Rump Fat Depth Intramuscular Fat % Retail Meat Yield %	Docility

Trial EBVs: Net Feed Intake (x2), Flight Time, Structural Traits (x6), Shear Force

Breeds and Traits

	Breed		Number of traits					
		Growth	Scan	Rep	Carc	NFI	FT	Total
•	Angus	5	8	3	6	2		24
•	Belmont Red	5	8	3	7		1	24
•	Brahman	5	8	3	7		1	24
•	Charolais	5	8	2	6			21
•	Droughtmaster	5	8	1	6			20
•	Hereford	5	8	3	6			22
•	Limousin	5	8	3	6			22
•	Santa Gertrudi	is 5	8	2	7		1	22
•	Shorthorn	5	8	2	6			21
•	Simmental	5	8	3	6			22

Using BREEDPLAN

- Identify the best animals to use as parents both stud and herd bulls
- Breed better and better animals

Genetic Trend ~ \$Index by Sector

BREEDPLAN SOFTWARE

- Suite of programs designed to provide EBVs,
 Accuracies, Genetic Trends and many other results
- Many traits Production, Reproduction, Carcase and others.
- One multiple trait analysis for all continuously distributed data
- Separate (single and multiple trait) analyses for categorical data.
- Selection Index (breed cases + customised)
- Diagnostic software

Multiple trait analyses

- Genetic effects (direct and maternal EBVs)
- Genetic groups for all EBVs
- Permanent environmental effects (maternal and repeat records)
- Sire x Herd interactions
- Heterogeneous variances
- Contemporary group
- Import overseas EBVs/EPDs
- Multiple breeds configuration
- Crossbred data

Multiple trait analyses

- Data (observations) are pre-adjusted:
 - To a standard age
 - Various methods including "intercept" method
 - To a standard age of dam
 - Carcase traits to constant weight
- Contemporary groups
 - Based on the history of the animals
 - Like are only compared (phenotypically) with like
 - Subdivided to minimise biases from correction and account for season (continuous update)
- Parameters
 - Estimated from the data

Categorical trait analyses

- Calving ease (difficulty)
 - With gestation length and birth weight in a multitrait analysis

Docility

- Structural Soundness
 - Intermediate optimum

Results

- EBVs
 - Blended with MBVs when available

Group solution & sire x herd fitted and estimated

- Accuracies
 - Approximated

Summary results – genetic trends, P & E trends

Future

- Incorporation of genomic information directly
 - "Single step" now under trialling
 - Using commercial carcase data with genomic pedigree (2014)
- Enhanced (faster) software
 - Exploit multiple cores
 - Re-parameterisation
 - Continuous evaluations
- Merging categorical analyses into main multiple trait analysis
- Continuing R&D into new traits, models and methods

Other activity

- \$Index
 - Expanded modelling esp re feed costs
 - New traits incl methane and cow longevity
- Information Nucleus (reference populations)
- Improved procedures for immigrant information
- New estimation incl. SNP Bayes
- Genomic composition genetic groups, inbreeding

Handling import animals:

- Animals that come with overseas estimated BVs of some sort
- Pseudo-progeny are generated:
 - Use O/S accuracy to estimate equivalent number of progeny
 - De-regress overseas BV to give pseudo-P for those progeny taking account of correlation between countries and between traits
 - This data (progeny pseudo-P's) included in local analysis
- As domestic progeny and other relatives accumulate data, this contributes more and more of the local EBV
- Working on improved method now

