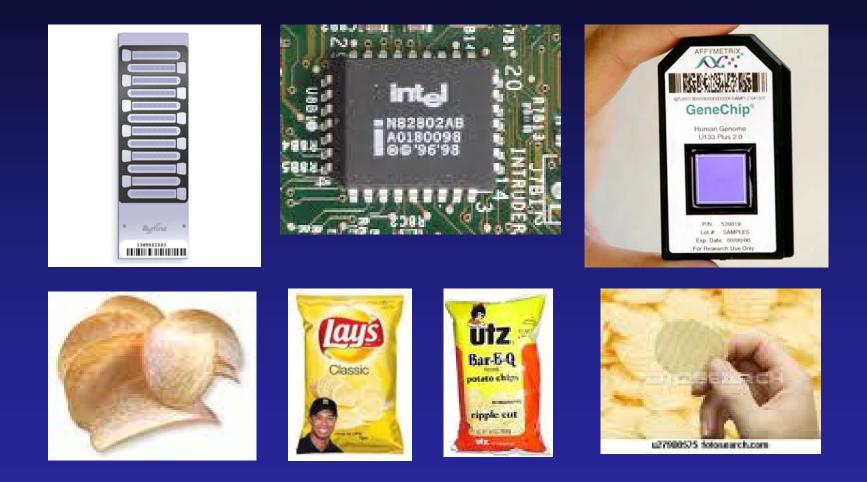
Combining Different Marker Densities in Genomic Evaluation

Paul VanRaden¹, Jeff O'Connell², George Wiggans¹, Kent Weigel³ ¹Animal Improvement Programs Lab, USDA, Beltsville, MD, USA ²University of Maryland School of Medicine, Baltimore, MD, USA ³University of Wisconsin Dept. Dairy Science, Madison, WI, USA

Paul.VanRaden@ars.usda.gov


Topics

Filling missing SNPs (imputation) Find haplotypes from genotypes • Use lower density to track higher Programs implemented April 2010 > Actual mixes of 3K with 50K Simulated mixes of 50K with 500K Calculating reliabilities

Interbull meeting, Riga, Latvia May 2010 (2)

Mixing Different Chips

Interbull meeting, Riga, Latvia May 2010 (3)

What is imputation?

- Genotypes indicate how many copies of each allele were inherited
- Haplotypes indicate which alleles are on which chromosome
- > Use observed genotypes to impute unknown haplotypes
 - Pedigree haplotyping uses relatives
 - Population haplotyping finds matching allele patterns

Interbull meeting, Riga, Latvia May 2010 (4)

Why impute haplotypes?

Predict unknown SNP from known Measure 3,000, predict 50,000 SNP Measure 50,000, predict 500,000 • Measure each haplotype at highest density only a few times Predict dam from progeny SNP Increase reliabilities for less cost

Haplotyping Program findhap.f90

Begin with population haplotyping

- Divide chromosomes into segments, ~250 SNP / segment
- List haplotypes by genotype match
- Similar to FastPhase, IMPUTE
- > End with pedigree haplotyping
 - Detect crossover, fix noninheritance
 - Impute nongenotyped ancestors

Interbull meeting, Riga, Latvia May 2010 (6)

Recent Program Revisions

- Imputation and GEBV reliability are better than in 9WCGALP paper
- Changes since January 2010
 - Use known haplotype if second is unknown
 - Use current instead of base frequency
 - Combine parent haplotypes if crossover is detected
 - Begin search with parent or grandparent haplotypes

Most Frequent Haplotypes


Most frequent haplotype in first segment of chromosome 15 for Holsteins had 4,316 copies = 41,822 * 2 * .0516

Interbull meeting, Riga, Latvia May 2010 (8)

Example Bull: O-Style USA137611441, Sire = O-Man

Read genotypes, write haplotypes

Interbull meeting, Riga, Latvia May 2010 (9)

Find Haplotypes – AB coding

Genotypes:

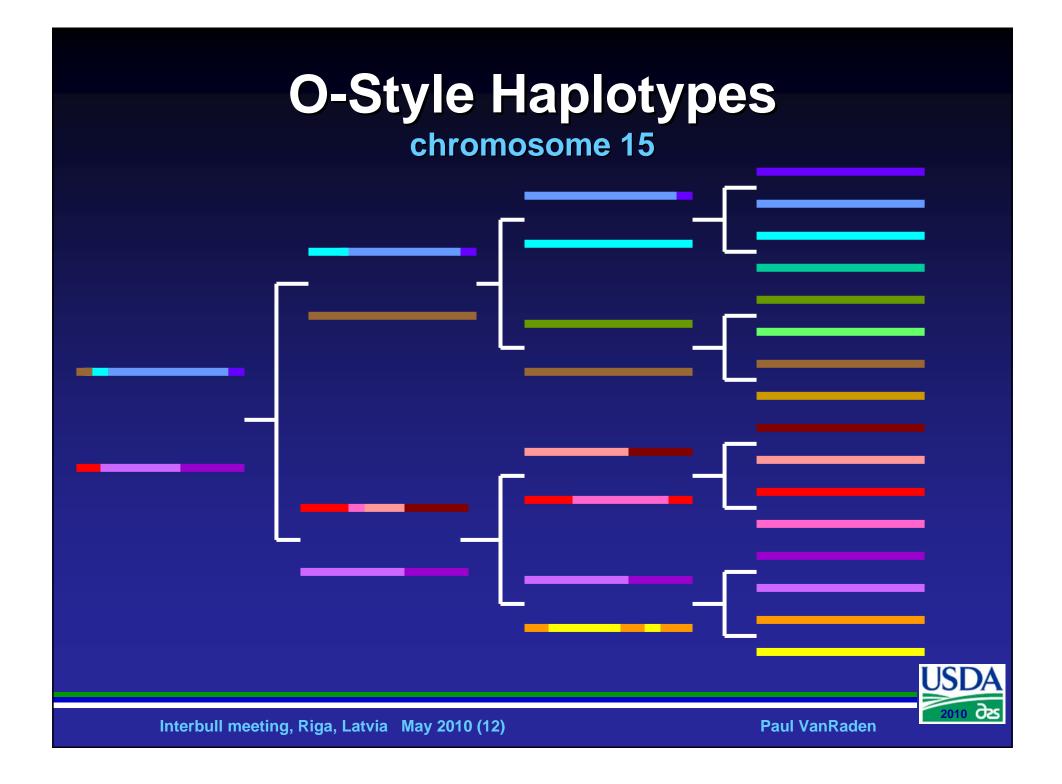
OmanBB,AA,AA,ABAB,AB,AB,AA,AA,ABOstyleBB,AA,AA,ABAA,AA,AA,AA,AA,ABHaplotypes:Image: Image: Ima

Interbull meeting, Riga, Latvia May 2010 (10)

Find Haplotypes – 0,1,2 coding

Genotypes: codes 0 = BB, 1 = AB or BA, 2 = AA

 Oman
 0 2 2 1 2 1 1 2 2 1


Ostyle 0 2 2 1 1 2 2 2 2 1

Haplotypes: codes 0 = B, 1 = unknown, 2 = A

OStyle (pat)0 2 2 1 2 2 2 2 2 1OStyle (mat)0 2 2 1 0 2 2 2 1

Interbull meeting, Riga, Latvia May 2010 (11)

How does imputation work?

- Identify haplotypes in population using many markers
- Track haplotypes with fewer markers
- » e.g., use 5 SNP to track 25 SNP
 - 5 SNP: 22020
 - 25 SNP: 202202002002002002020020200

Interbull meeting, Riga, Latvia May 2010 (13)

Imputed Dams

If progeny and sire both genotyped

- First progeny inherits 1 of dam's 2 haplotypes
- Second progeny has 50:50 chance to get same or other haplotype
- Haplotypes known with 1, 2, 3, etc. progeny are ~50%, 75%, 87%, etc.

Interbull meeting, Riga, Latvia May 2010 (14)

Better Communication is Needed

Progeny genotypes should affect dam, but programs are not yet available" Jan 2009 USDA Changes Memo

Programs are available to impute 1300 dams" Oct 2009 USDA report to Council

"Encourage USDA to use genotypes, derived by imputation, in genetic evaluation" Oct 2009 Holstein USA Board of Directors (in Holstein Pulse)

Interbull meeting, Riga, Latvia May 2010 (15)

Haplotyping Tests – Real Data

> Half of young animals assigned 3K

- Proven bulls, cows all had 50K
- Dams imputed using 50K and 3K

> Half of ALL animals assigned 3K

- Could 3K reference animals help?
- 10,000 proven bulls yet to genotype
- Should cows with 3K be predictors?

Interbull meeting, Riga, Latvia May 2010 (16)

Correlations² of 3K and PA with 50K

Half of YOUNG animals had 3K PTA, half 50K PTA

Trait	Corr(3K,50K) ²	Corr(PA,50K) ²	Gain
NM\$.899	.518	79%
Milk	.920	.523	83%
Fat	.920	.516	83%
Prot	.920	.555	82%
PL	.933	.498	87%
SCS	.912	.417	85%
DPR	.937	.539	86%

Interbull meeting, Riga, Latvia May 2010 (17)

Using 3K as Reference Genotypes Half of ALL animal NM\$ were from 3K, half 50K

REL Gain as compared to all 50K

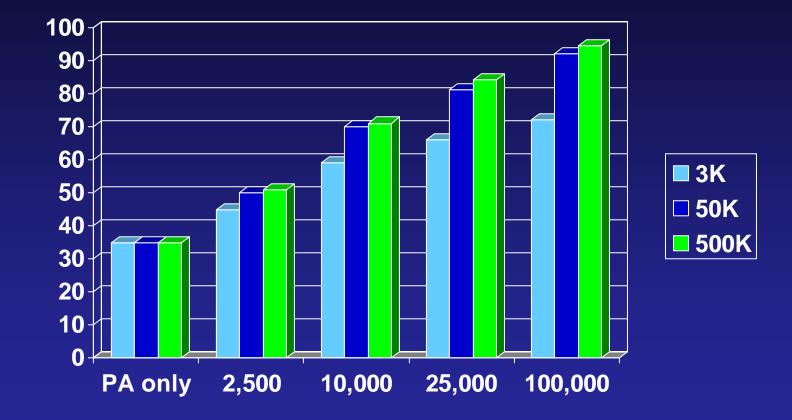
Breed	50K prog	3K prog	Imputed dams
НО	90%	73%	36%
JE	82%	56%	44%
BS	84%	72%	55%

Interbull meeting, Riga, Latvia May 2010 (18)

Simulated 500K Genotypes

Linkage in base population

- Similar to actual linkage reported by:
 - De Roos et al, 2008 Genetics 179:1503
 - Villa-Angulo et al, 2009 BMC Genetics 10:19
- Underlying linkage corresponds to D'
- > Three subsets of mixed 50K and 500K:
 - Of 33,414, only 1,586 (young) had 500K
 - Also bulls > 99% REL, total 3,726
 - Also bulls > 90% REL, total 7,398


Results from 500K Simulation

Density	Single	Mixed			Single
Chips	50K	50K and 500K			500K
Missing	N = 0	1,586	3,726	7,398	33,414
Before	1%	88%	80%	70%	1%
After	.05%	5.3%	2.3%	1.5%	.05%
REL	82.6	83.4	83.6	83.7	84.0

Interbull meeting, Riga, Latvia May 2010 (20)

REL Using Only 3K, 50K, or 500K with increasing numbers of bulls

Interbull meeting, Riga, Latvia May 2010 (21)

Conclusions

- ➢ Genomic evaluations can mix different chip densities to save \$ (or € or ¥)
 - New programs implemented in April 2010
- Only a few thousand of highest density genotypes needed, and other animals imputed
- More animals can be genotyped to increase selection differential and size of reference population

Acknowledgments

- Curt Van Tassell of BFGL selected the 3,209 low density SNP
- Bob Schnabel of U. Missouri fixed map locations for several SNP
- Mel Tooker assisted with computation

Interbull meeting, Riga, Latvia May 2010 (23)