Genomic evaluations in the United States and Canada: A collaboration

G.R. Wiggans1, T.S. Sonstegard1, P.M. VanRaden1, L.K. Matukumalli1,2, R.D. Schnabel3, J.F. Taylor3, J.P. Chesnais4, F.S. Schenkel5, and C.P. Van Tassell1

1Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, USA
2Bioinformatics and Computational Biology, George Mason University, Manassas, VA, USA
3Division of Animal Sciences, University of Missouri, Columbia, MO, USA
4Semex Alliance, Guelph, ON, Canada
5University of Guelph, Guelph, ON, Canada

george.wiggans@ars.usda.gov

DNA sources

- Cooperative Dairy DNA Repository (CDDR)
 - Progeny-test bull semen contributed by 7 artificial-insemination (AI) organizations
 - Currently over 20,000 bulls included
- Bulls and cows nominated by AI organizations
- Cooperator contributions to research projects
- Specific semen purchases
Genotyping laboratories

- Bovine Functional Genomics Laboratory (BFGL), USDA (Beltsville, MD)
- University of Missouri (Columbia, MO)
- University of Alberta (Edmonton, AB)
- Illumina (San Diego, CA)
- Genetics & IVF Institute (Fairfax, VA)
- GeneSeek (Lincoln, NE)

SNP selection

- Minor allele frequency (MAF) > 0.05
- Portion heterozygous within 0.07 of expected
- SNP with clustering problems eliminated
- Redundant SNP eliminated
- 38,416 SNP remained
- MAF uniform 0.05 to 0.50
- Some unreadable SNP may be recovered
Accurate evaluations

- Accurate genomic evaluations require estimates of SNP effects
- Evaluations with high reliability provide the most information
- Recent animals are more useful than ones from earlier generations
- Reliability of genomic evaluations increases with number of predictor animals

Holsteins genotyped

- Graph showing the number of animals genotyped over birth years (1950-2000).
 - Bulls and Cows are differentiated by color.
Genomic evaluation & reliability

- Calculate parent average (PA) based only on genotyped animals with best linear unbiased prediction
- Combine traditional PA (or evaluation) with genomic PA and evaluation using selection index weights
- Update traditional evaluation with additional information from genomics
- Reliability from inverse of genomic relationship matrix

Data & evaluation flow

Dairy producers → DNA laboratories → Artificial-insemination organizations → Animal Improvement Programs Laboratory, USDA

- Samples and evaluations flow between entities
- Nominations and evaluations are highlighted in the diagram
Schedule

- Calculate SNP effects with each of 3 annual traditional evaluations
- Calculate genomic evaluations 1 or more times between runs
 - Recalculate SNP effects if significant number of predictor animals added
 - Use existing SNP effects if only young animals added

Official release in 2009

- Added accuracy of genomic evaluations propagated to evaluations of relatives without genotyping
- Public release of genomic evaluations
 - Cows soon after calculated
 - Bulls when enrolled with NAAB or Canadian AI organization
 - Shared by agreement with owner
Research at Guelph in 2004-2007

- Affymetrix 10,000 SNP panel
- About 6,000 SNP usable for genomic selection
- Many clusters
- Study of a wide range of genomic methods

Project at Guelph - 10,000 markers - 820 bulls

<table>
<thead>
<tr>
<th>Trait</th>
<th>PA-reliability</th>
<th>GEBV-reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein yield</td>
<td>38</td>
<td>46</td>
</tr>
<tr>
<td>Fat yield</td>
<td>38</td>
<td>43</td>
</tr>
<tr>
<td>SCS</td>
<td>30</td>
<td>48</td>
</tr>
<tr>
<td>Conformation</td>
<td>39</td>
<td>47</td>
</tr>
</tbody>
</table>
Research in Canada

- Development of GEBV for Canadian traits using data from USDA project: summer 2008
- Research collaboration with USDA:
 - Genomic methods
 - Combining genomic and phenotypic data
 - Single SNP vs haplotypes
 - Other topics

GEBV in Canada

- CDN: official GEBV planned for 2009
- Same approach as US:
 - One EBV figure using any genomic data available
 - All GEBV public when calculated
Benefits of collaboration

- Share genotypes
- Collaborate on methods
- Harmonize policy
- Exchange domestic evaluations before release date for use in SNP effect estimation

Interbull

- Can process genomic evaluations
- Genomics contribution to accuracy should be reported
 - Avoid double counting when submitted by multiple countries
 - Could be processed similar to parent contribution
- Change in 10-herd requirement needed to allow marketing bulls with only genomic information in countries without genomic evaluations
Implications

- Era of genomic prediction has begun
- Young bull acquisition and marketing as well as cow selection will use genomic data
- Routine genotyping and validation will become industry rather than research responsibilities

Financial support

- National Research Initiative grants, USDA
- Natl. Assoc. of Animal Breeders (NAAB, Columbia, MO)
 - ABS Global (DeForest, WI)
 - Accelerated Genetics (Baraboo, WI)
 - Alta (Balzac, AB)
 - Genex (Shawano, WI)
 - New Generation Genetics (Fort Atkinson, WI)
 - Select Sires (Plain City, OH)
 - Semex Alliance (Guelph, ON)
 - Taurus-Service (Mehoopany, PA)
- Agricultural Research Service, USDA