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Abstract 
 
Several studies have shown that computation of genomic estimated breeding values 
(GEBV) with accuracies significantly greater than parent average EBV requires 
genotyping of at least several thousand progeny-tested bulls.  For all published analyses, 
GEBV computed from selected samples of markers have lower or equal accuracy than 
GEBV derived based on all valid SNPs. In the current study we report on four new 
methods for selection of markers.  Milk, fat, protein, somatic cell score, fertility, 
persistency, herd-life, and the Israeli selection index were analyzed. The 969 Israel 
Holstein bulls genotyped with EBV for milk production traits computed from daughter 
records in November, 2011, were assigned into a training set of 829 bulls with progeny 
test EBV in June, 2008, and a validation set of 140 young bulls.  Numbers of bulls in the 
two sets varied slightly among the nonproduction traits.  In Method 1, SNPs were first 
selected for each trait based on a linear model analysis of the effect of each marker on the 
bulls’ current EBV for each trait.  A subset of these SNP then was analyzed by a REML 
model including relationships.  Method 2 was the same as Method 1, except that that the 
dependent variable was the 2008 EBV.  In Method 3, the SNPs with the greatest effects 
on the 2008 EBV, as determined by the REML analysis were deleted.  Of the remaining 
SNPs, the markers with the greatest effects on 2011 EBV were retained.  In Method 4, 
the SNPs with the greatest effects on the 2008 EBV, as determined by the REML analysis 
were deleted.  Of the remaining SNPs, the markers with the greatest change in allele 
frequency between the bulls in the training set, and the validation bulls were retained for 
analysis.   For all methods, the numbers of SNPs deleted and retained were varied to 
obtain a maximum correlation between the GEBV and EBV of the validation bulls.  In 
Methods 1 and 2, the number of SNPs included in the analyses was varied over the range 
of 400 to 6000.  For each trait, except fertility, an optimum number of markers between 
600 and 2000 was obtained for Method 1, based on the correlation between the GEBV 
and current EBV of the validation bulls. For all traits, the difference between the 
correlation of GEBV and current EBV and the correlation of the parent average and 
current EBV was >0.1.  Method 2 was inferior to Method 1 and generally no better than 
parent average EBV, but Method 3 outperformed Method 1.  Even Method 4, in which 
selection of markers is based only on information available at the time the training set is 
generated, correlations between GEBV and current EBV were on the average 0.042 
higher than correlations of parent averages with current EBV.  Furthermore, GEBV were 



less biased than parent averages.  It is likely that other methods of SNP selection could 
improve upon these results.  
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Introduction 
 
All of the large dairy cattle populations have already genotyped thousands of bulls with 
genetic evaluations based on progeny tests for the Illumina BovineSNP50 BeadChip. 
Beginning in 2008 a large number of studies have proposed methods for genomic 
evaluations in dairy cattle.  Most studies have used variations of the method of VanRaden 
(2008) in which the dependent variable is either the bulls’ daughter-yield-deviations or 
deregressed estimated breeding values (EBV), and the independent variables are the 
genotypes of all valid SNPs.  Genomic EBV (GEBV) are then derived as an index of the 
sum of SNP effects, the parent average EBV (PA) and other factors.  In nearly all cases, 
GEBV were evaluated by dividing the population of sires with genotypes and EBV based 
on progeny tests into a “training set,” consisting generally of older bulls, and a 
“validation set” of younger bulls.  The effects of the SNP and the regression coefficients 
for the final index are derived from the training set, and these values are then used to 
derive GEBV for the validation set, based only on PA and genotypes.  The GEBV of the 
validation bulls are then compared to their current EBV.    
 Coefficients of determination for the GEBV in the training set are nearly always 
much higher than correlations of GEBV with current EBV in the validation set, especially 
if bulls are assigned to the two groups based on birth dates.  A possible explanation is that 
linkage relationships and the segregating quantitative trait loci change over time (Moser 
et al., 2009).  Glick et al. (2012) found that out of the15,485 haplotypes with population 
frequencies between 5% and 95% in the population of Israeli Holstein bulls born since 
1984, 930 haplotypes (6%) underwent significant changes in allelic frequencies, resulting 
in frequencies of either <10% or >90% for the bulls born between 2004 and 2008.  
 Various studies have proposed computation of GEBV based on subsets of SNPs.  
Three basic strategies have been proposed to select SNPs: 

1. Random (Vazquez et al., 2010). 
2. Equally spaced throughout the genome  (Habier et al., 2009; Moser et al., 2010; 

VanRaden et al., 2009; Vazquez et al., 2010; Weigel et al., 2009; Zhang et al., 
2011). 

3. Markers with the greatest effects on the trait analyzed, as estimated from the 
analysis of all markers (Moser et al., 2010; Vazquez et al., 2010; Weigle et al., 
2009; Zhang et al., 2011).  

Although accuracies nearly equal to analysis with all markers were obtained with subsets 
of markers, the accuracy of GEBV computed from subsets of markers is never 
significantly more than the accuracy of GEBV computed from analysis of all markers. 
 Unlike the effect of increasing the number of markers, which reaches a plateau for 
several thousand, increasing the number of bulls analyzed results in more accurate GEBV 
over the entire range tested to date.  Furthermore, the accuracy of GEBV for young bulls 
computed from analysis of <1000 bulls in the training set is no higher than the accuracy 



of PA (e. g., VanRaden et al., 2009).  Bayesian “shrinkage” of marker effects improves 
accuracy of GEBV at best marginally.  
 In the current study we report on a four new methods for selection of markers for 
inclusion in analysis, and demonstrate that the accuracy of GEBV based on selected sets 
of marker can be greater than GEBV based on all valid markers.  We also demonstrate 
that GEBV with higher accuracy than PA can be derived, even though the training set 
includes <1000 bulls. 
 
Material and methods 
 
The data set and traits analyzed 
 
All valid records from the Israeli Holstein population from January, 1985, through 
November, 2011, were included in the analysis.  Eight traits were analyzed; milk fat, and 
protein production, somatic cell score (SCS), female fertility, persistency of milk 
production, herd-life, and PD11, the current Israeli breeding index.  Multitrait animal 
model EBV were computed for milk, fat, protein, SCS, female fertility, and persistency, 
with each parity considered a separate trait as described by Weller & Ezra (2004) and 
Weller et al. (2006).  Parities 1-5 were included in the analyses.  Female fertility was 
computed as the inverse of the number of inseminations to conception (Weller and Ezra, 
1997).  Single-trait animal-model EBV were computed for herd-life as described (Settar 
and Weller, 1999). 

The complete data set was divided into a “training set,” records generated prior to 
June, 2008; and the “validation set,” records generated from June, 2008.  The difference 
of 3.5 years between validation set and the complete data set was chosen to mimic the 
actual dairy situation in that young bulls reach sexual maturity at the age of one year, and 
obtain their first EBV based on daughter records at approximately 4.5 years.   

Modified daughter-yield-deviations (MDYD), weighted means of daughter records 
corrected for herd-year-season and parity effects; were computed for each bull with valid 
daughter records in the training set, using records prior to June, 2008.  Only bulls with at 
least 20 effective daughters for 
milk production traits, 5 effective 
daughters for SCS and 
persistency, 2 effective daughters 
for fertility, and 1 valid daughter 
for herd-life were included in the 
analysis of each trait.  In addition, 
current MDYD were computed 
based on all records in the 
complete data set. 

 
Animals genotyped and 
validation of SNPs 
 

A total of 1359 bulls and 
calves were genotyped, 912 bulls 

Figure 1.  Numbers of bulls with genotypes by 
birth year. 



for the 54001 SNP BeadChip, and 447 
for the 54,609 SNP BovineSNP50 v2 
BeadChip.  The numbers of bulls 
genotyped by birth year are given in 
Figure 1.  Birth years ranged from 
1975 through 2011.  The numbers of 
bulls with genotypes and MDYD in 
the training and validation data sets by 
trait are given in Table 1. 

SNPs were deleted from analysis 
if:   

1. They did not appear on the 
original Beadchip. 

2. The frequency of the less 
frequent allele < 0.05. 

3. There were valid genotypes for < 
half of the animals genotyped. 

Table 1.  The number of bulls with genotypes 
and MDYD in the training and validation 
data sets by trait. 
 
Trait analyzed  Number of bulls 
 Training  Validation 
Milk (kgs)  829 140 
Fat (kgs)  829 140 
Protein (kgs)  829 140 
SCS  785 121 
Female fertility (%) 835 139 
Persistency (%)  827 129 
Herdlife (days)  846 129 
Israeli Index  760 110 

4. The genotypes of two consecutive SNPs were identical for > 95% of the animals 
with valid genotypes.  In this case the second SNP was deleted.  

After edits there were 39,816 valid SNPs. 
 

Calculations of genomic evaluations and selection of SNPs 
 
The method of VanRaden (2008) was used to compute marker effects on the MDYD 
from the training set for each trait.  Regression coefficients for the sum of marker effects, 
PA and birth year effects were then computed from the training data set, using all bulls 
with genotypes, MDYD, and EBV for dams based on at least one lactation record.   

The regression coefficients derived from the training set were then used to compute 
GEBV for the “validation bulls,” bulls with MDYD in the total population and dam EBV 
based on at least one lactation record, but without EBV based on daughter records in the 
validation set.  The GEBV of the validation bulls and their PA were compared to their 
November, 2011, EBV and MDYD computed from the complete data set.  GEBV were 
computed as described for protein and female fertility using all valid markers and using 
each 20th valid SNP.   
 Four additional methods were used to select subsets of SNPs for analysis.  In 
Method 1, SNPs were first selected for each trait based on a linear model analysis of the 
effect of each marker on the bulls’ November, 2011, EBV for each trait.  A subset of 
these SNP was analyzed by a REML model including relationships.  In both steps each 
SNP was analyzed separately. The number of SNPs included in the analysis was varied 
over the range of 400 to 6000 to obtain an optimum.  Method 2 was the same as Method 
1, except that that the dependent variables were the bulls’ June, 2008, EBV.  

In Method 3, the SNPs with the greatest effects on the 2008 EBV, as determined by 
the REML analysis were deleted.  Of the remaining SNPs, the markers with the greatest 
effects on 2011 EBV were retained.  In Method 4, the SNPs with the greatest effects on 
the 2008 EBV, as determined by the REML analysis were deleted.  Of the remaining 
SNPs, the markers with the greatest change in allele frequency between the bulls in the 



training set, and the validation bulls were retained for analysis.  For Methods 3 and 4, the 
numbers of SNPs deleted and retained were varied to obtain a maximum correlation 
between the GEBV and EBV of the validation bulls. 

Correlations of the GEBV of the validation bulls with their current EBV were 
compared to the correlations of their PA with their EBV.  Since the PA has a major effect 
on EBV of low heritability traits, even with >50 daughters, correlations of GEBV and PA 
with current MDYD were also computed.   In addition, to estimate bias of PA and 
GEBV, relative to the current EBV, regressions of PA and GEBV on current EBV were 
computed, and means and standard deviations of PA, GEBV and current EBV were 
compared.  
 
Results and discussion 
 
Correlations of GEBV and PA 
with current EBV and MDYD 
from analysis of all SNPs and 
equally spaced SNPs are given 
in Table 2.  With all valid 
SNPs, correlations of GEBV 
with current EBV and MDYD 
were slightly higher than 
parent averages for fertility, 
but lower for protein.  With 
<2000 approximately evenly 
spaced SNPs, correlations of 
GEBV with current EBV were 
lower than PA for both traits.  

Table 2.  Correlations of GEBV and parent averages 
with current EBV and MDYD from analysis of all 
SNPs and equally spaced SNPs 
 

  Correlations with current values 

Trait No.  EBV MDYD 

 SNPs PA GEBV PA GEBV 

Protein 39,816 0.39 0.36 0.41 0.36 

 1991  0.36  0.36 

Fertility 39,816 0.66 0.67 0.36 0.41 

 1991  0.62  0.37 

 
Figure 2.  Correlations between Method 1 GEBV and current EBV as a function of the 
numbers of SNPs included in the analysis. 

 

 



 The correlations 
between the Method 1 
GEBV and current EBV as 
a function of the number of 
SNPs included in the 
analysis are plotted in 
Figure 2.  There was a 
clear optimum for all the 
traits, except for fertility.  
The optimum number of 
markers was between 600 
and 6000 for all of the 
traits analyzed.   

Correlations of 
Method 1 GEBV and PA 
with current EBV and 
MDYD with optimum 
number of SNPs are given 
in Table 3. The 
correlations of GEBV with current EBV and MDYD were higher than the correlations of 
PA with EBV and MDYD for all traits.  The mean difference in the correlations between 
GEBV and PA was 0.18.  Differences in correlations between PA and GEBV with 
current EBV and MDYD were similar for all traits.  The greatest differences in 
correlations were obtained for PD11 for both EBV and MDYD, close to 0.3.  
Correlations between GEBV and EBV were higher for fertility and persistency, which 
have low heritability, due to the greater contribution of PA to EBV; while correlations of 
GEBV and PA with MDYD were lower. All correlations were lower for herd-life, which 
has only one record per cow.  For protein the correlations of EBV with GEBV and PA 
were 0.59 and 0.39.  

Table 3.  Correlations of Method 1 GEBV and parent 
averages with current EBV and MDYD with optimum 
number of SNPs. 
 

  Correlations 

Traits  Optimum EBV with: MDYD with: 

 No. SNPs PA GEBV PA GEBV 

Milk  600 0.55 0.69 0.56 0.67 
Fat  1200 0.44 0.66 0.34 0.61 
Protein  

ty  
y 

2000 0.39 0.59 0.41 0.57 
SCS  600 0.53 0.66 0.42 0.60 
Fertili 6000 0.65 0.73 0.36 0.49 
Persistenc 1000 0.60 0.71 0.45 0.62 
Herdlife  800 0.37 0.54 0.17 0.35 
PD11  1800 0.37 0.64 0.28 0.58 

In Method 1, the SNPs were selected based on their November, 2011, EBV.  In 
Method 2 SNPs were selected by the same procedure, but the dependent variables were 
the 2008 EBV.  In this case GEBV were not more accurate than PA for any of the traits 
analyzed (data not shown). In the analysis of the validation set, the effect of PA was 
highly correlated with the sum of the SNP effects.  Thus both the GEBV and PA detected 
the same QTL.  However, as noted previously (Glick et al., 2012) the QTL segregating in 
the validation bulls are not the same as those segregating in the training population.  In 
order to improve GEBV, it is necessary to include markers linked to QTL that are not 
segregating in the training set.   

Correlations of Method 3 GEBV and PA with current EBV and MDYD with 
optimum number of SNPs are given in Table 4. The optimum number of markers deleted 
was 5000 for all traits, except protein. The optimum number of markers included ranged 
from 1000 to 1700.  In nearly all cases the correlations of the GEBV with EBV and 
MDYD were higher with Method 3 than Method 1. The mean difference in the 
correlations between GEBV and parent averages was 0.26.  Method 3 also used 
information not available in June, 2008. 



The mean difference in the SNP allelic frequencies was 0.05, and the maximum 
difference was 0.3.  Five percent of the SNPs (1786) had differences > 0.12. Correlations 
of Method 4 GEBV and PA with current EBV and MDYD with optimum number of 
SNPs are presented in Table 5. The optimum number of markers deleted ranged from 200 
for fat to 8000 for persistency.  The optimum number of markers included ranged from 
800 for SCS to 9000 for persistency.  For all traits, except for milk, the correlations of the 
GEBV with EBV and MDYD were higher than the correlations of parent averages with 
EBV and MDYD.  The mean difference in the correlations between GEBV and parent 
averages was 0.042.  This method, unlike Methods 1 and 3, only used information 
available in June, 2008. 
 
Table 4.  Correlations of Method 3 GEBV and parent averages with current EBV and 
MDYD with optimum number of SNPs. 
 

  Correlations

Traits  Optimum No. SNPs EBV with: MDYD with: 

 deleted included PA GEBV PA GEBV 

Milk  5000 1200 0.55 0.77 0.56 0.76 
Fat  5000 1700 0.44 0.72 0.34 0.65 
Protein  4000 1000 0.39 0.75 0.41 0.74 
SCS  5000 1200 0.53 0.77 0.42 0.68 
Fertility  5000 1200 0.65 0.79 0.36 0.53 
Persistency  5000 1600 0.60 0.80 0.45 0.68 
Herdlife  5000 1400 0.37 0.57 0.17 0.33 
PD11  5000 1600 0.37 0.76 0.28 0.69 

 
 
Table 5.  Correlations of Method 4 GEBV and parent averages with current EBV and 
MDYD with optimum number of SNPs. 
 

  Correlations

Traits  Optimum No. SNPs EBV with: MDYD with: 

 deleted included PA GEBV PA GEBV 

Milk  500 2000 0.55 0.48 0.56 0.48 
Fat  200 1000 0.44 0.52 0.34 0.43 
Protein  1200 1500 0.39 0.47 0.41 0.48 
SCS  1000 800 0.53 0.56 0.42 0.48 
Fertility  1500 2000 0.65 0.66 0.36 0.39 
Persistency  8000 9000 0.60 0.65 0.45 0.54 
Herdlife  500 2000 0.37 0.43 0.17 0.21 
PD11  800 1500 0.37 0.41 0.28 0.38 

 



Genetic evaluations 
are unbiased if the means are 
equal to the means of the 
true genetic values and the 
regressions of EBV on true 
genetic values are equal to 
unity.  Since true genetic 
values are unknown, GEBV 
and PA were compared to 
current EBV.  Regressions 
and coefficients of 
determination of PA and 
Method 4 GEBV on EBV 
are presented in Table 6, and 
means and standard 
deviations of PA, Method 4 
GEBV and current EBV are 
given in Table 7.  For both PA and GEBV regressions were close to unity for all traits.  
With respect to means, GEBV were less biased than PA for milk production traits and 
PD11. Coefficients of determination for GEBV were higher than for PA for all traits 
except for milk production. 
 
Table 7. Means and standard deviations of parent averages, Method 4 GEBV and current 
EBV. 
 

Traits Means  Standard deviations 

 PA GEBV EBV  PA GEBV EBV 

Milk  237 -0 120  183 205 336 
Fat  15.8 13.9 13.0  6.9 6.1 13.3 
Protein  12.6 10.7 10.9  4.0 3.9 8.7 
SCS  -0.081 -0.092 -0.101  0.12 0.15 0.20 
Fertility  0.36 0.28 0.57  1.50 1.74 2.44 
Persistency  0.57 0.54 -0.16  1.34 1.26 2.16 
Herdlife  55 60 51  41.3 42.2 83.5  
PD11  466 377 370  127 124 335  

 
Conclusions 
 
GEBV derived from selected sets of markers can outperform GEBV derived from 
analysis of all markers.  GEBV derived from selected sets of markers can outperform 
parent averages, even if the training population includes <1000 bulls. Using the optimum 
strategy correlations of GEBV with current EBV were 0.2 higher than correlations of PA 
with current EBV.  Even if selection of markers is based only on information available at 
the time the training set is generated, it is still possible to select sets of markers that yield 
correlations between GEBV and current EBV of 0.042 higher than correlations of PA 

Table 6.  Regressions and coefficients of determination 
of parent averages and Method 4 GEBV on EBV. 
 

Traits  Regression on 
EBV 

 Coefficient of 
determination 

 PA GEBV  PA GEBV 

Milk  1.00 0.79  0.30 0.23 
Fat  0.85 1.13  0.20 0.27 
Protein  0.87 1.06  0.16 0.22 
SCS  0.85 0.76  0.28 0.31 
Fertility  1.07 0.93  0.43 0.44 
Persistency 0.96 1.12  0.36 0.42 
Herdlife  0.75 0.86  0.14 0.19 
PD11  0.89 1.11  0.13 0.17 



with current EBV.  Furthermore, GEBV were less biased than parent averages.  It is 
likely that other methods of selection could improve upon these results.   
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