Lely’s vision in automation and sensor development

ICAR Showcase, Riga, June 2nd 2010
Dr. Tom Vanholder, Lely Industries
1948
Our mission statement

“To be the company in the dairy and cattle market that is the front runner in state-of-the-art farming solutions, striving for improvement of the financial and social wellbeing of its customers”
Transition to automation

Increased farm size – reduced labour force – increased labour costs
Mechanisation

- Mechanization of routine activities
Automation

- Automation of routine activities
Goals

- Milk/FTE
- Profits
- Costs
Focus on the individual cow:

- Increase individual cow performance and production
- Optimise profits per cow
- Management by exception

More milk/FTE – increase profitability
How to automate human senses?
Automation of human senses

Who are you? (ID)

What do you do? (sensors)

What can be improved? (software analyses)

Research & Innovation
Optimisation of performance

Individual optimisation of health and production

Sensors and software for recording and analysis

Individual cow parameters
Sensor development

- Cheap, reliable, non-invasive sensors
- Smart algorithms to improve accuracy
- Multi-use of one sensor
- Use of sensors from other industries
 - Automotive
 - Medical
 - Communication
- Management by Exception
Exact or not?

- Is it relevant to know if you drive 120,462 km/hour or is it sufficient when you know that you drive 120 km/hour +/- 5 km?

- This means that as a user of the data you have to understand the meaning of the data.
Are the algorithms important…?

\[Y_t = M_{it} = \left(c_{0, it} + c_{1, it} C_{it} + c_{2, it} C_{it}^2 \right) I_{it}^{(1)} + b_{2, it} I_{it}^{(2)} + v_{it} \]

\[= c_{0, it} I_{it}^{(1)} + c_{1, it} C_{it} I_{it}^{(1)} + c_{2, it} C_{it}^2 I_{it}^{(1)} + b_{2, it} I_{it}^{(2)} + v_{it} \]

\[= F_r \theta_t + v_t \]

\[\gamma_t \sim \text{Beta} \left[\delta_{V_t, n_{i-1}} / 2, (1 - \delta_{V_t, n_{i-1}}) / 2 \right] \]

\[R_t = GC_{t-1} G' \delta_t = \begin{pmatrix} c_{11, t-1} / \delta_{t, 1} & c_{12, t-1} \\ c_{21, t-1} & c_{22, t-1} / \delta_{t, 2} \end{pmatrix} \]

\[C_{\text{opt}, it} = -\left(\pi_{M, it} \hat{c}_{1, it} - \pi_{R, it} \hat{d}_{1, it} \right) / 2\pi_{M, it} \hat{c}_{2, it} \]
Sensors in practice

- Udder health
- Weight
- Rumination
- Body temperature
- Activity
- Milk, fat, protein yield
- Feed intake
- Visit behaviour
- Udder health
Smart algorithms: mastitis detection

Performance Results

<table>
<thead>
<tr>
<th></th>
<th>TP quarter</th>
<th>FN quarter</th>
<th>TN quarter</th>
<th>FP quarter</th>
<th>TP case</th>
<th>FN case</th>
<th>SE quarter</th>
<th>SP quarter</th>
<th>SE quarter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farm 1</td>
<td>41</td>
<td>30</td>
<td>117949</td>
<td>693</td>
<td>12</td>
<td>2</td>
<td>57.75%</td>
<td>99.42%</td>
<td>85.71%</td>
</tr>
<tr>
<td>Farm 2</td>
<td>7</td>
<td>50</td>
<td>32237</td>
<td>161</td>
<td>4</td>
<td>0</td>
<td>12.28%</td>
<td>99.50%</td>
<td>100%</td>
</tr>
<tr>
<td>Farm 3</td>
<td>3</td>
<td>8</td>
<td>39292</td>
<td>399</td>
<td>2</td>
<td>0</td>
<td>27.27%</td>
<td>98.99%</td>
<td>100%</td>
</tr>
<tr>
<td>Average</td>
<td>51</td>
<td>88</td>
<td>189478</td>
<td>1253</td>
<td>18</td>
<td>2</td>
<td>36.69%</td>
<td>99.34%</td>
<td>90%</td>
</tr>
</tbody>
</table>

- ISO demand: 99+% SP, 70+% SE
- Practical results: 99+% SP, 90% SE
- 9 out of 10 mastitis cases detected
- 993 out of 1000 milkings correctly classified
Smart algorithms: weight

What is the weight of a cow??
Natural variation of +/-60kg in 24 hours.
By the use of a dynamic filter we are now accurate by 0.8% of the life weight (4-5 kg).
Where will we go?

Critical parameters for succes:

- General health
- Udder health
- Fertility
- everything else is a consequence....
Future developments

- Health – Cow “events”
- Behaviour and well-being
- Milk components
- Environment: carbon footprint
Future developments

- Further improvement of reliability
- Reduction of down time (lower service cost)
- Reduction of maintenance
- Offer “more for the same €”
- And obviously “smart algorithms” to get the maximum information out of the available data.
Balance

- Reproducable/simplicity
- Support / 24/7 service
- Durable
- Costs vs. Labour reduction
- Respect:
 - Animal / cow
 (animal well being / interaction)
 - Environment
 (energy consumption)