Calf price impacts dairy farm profit too

N. Mc Hugh¹, R.D. Evans² and D.P. Berry¹

¹Animal & Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork

²Irish Cattle Breeding Federation, Bandon, Co. Cork

Linkage in cattle populations

- Large interrelationship between beef and dairy industry
 - >40% of dairy cows mated to beef sires
 - >35% of animals slaughtered in Ireland originate from the dairy herd
- Quota scenario
 many dairy farmers

 retained beef cross animals on farm
- Abolishment of quotas → all surplus animals sold as soon as possible

Dairy Breeding Objective

- The national dairy breeding objective for Ireland → Economic Breeding Index (EBI)
- Introduced in 2000
- Evolving → reflect overall farm profitability
- 5 sub-indexes

EBI

■ Milk ■ Fertility □ Calving □ Beef ■ Maintenance ■ Health

New Beef trait -Calf Price?

- Prerequisite for inclusion of new trait in index:
- 1. Economically, environmentally or socially important

- > 20% of dairy farm income is from sale of calves and cull cows
- 2. Easily measurable or be genetically correlated with a measurable trait
 - > Mart data routinely collected by ICBF
- 3. Exhibit genetic variation

Calf price records

Age at Sale - Calves

New Beef trait -Calf Price?

- Prerequisite for inclusion of new trait in index:
- 1. Economically, environmentally or socially important \checkmark

- > 20% of dairy farm income is from sale of calves and cull cows
- 2. Easily measurable or be genetically correlated with a measurable trait
 - > Mart data routinely collected by ICBF
- 3. Exhibit genetic variation
 - > Previous studies shown ample genetic variation
 - \rightarrow h²=0.34; σ_q =25.7

Objectives

- 1. To examine the usefulness of including calf price in the EBI
- 2. To quantify the impact on genetic gain when calf price replaced progeny carcass traits
 - > Carcass weight, conformation and fat score

Materials and methods

- · Selection indexes were developed for:
 - 1. All current goal traits in the EBI
 - 2. Calf price replaced progeny carcass traits
- Previously reported genetic parameters and correlations were used
- Economic values were calculated using the Moorepark dairy systems model
- Relative emphasis calculated for 5 sub-indexes

Results

Genetic correlations

Between calf price & goal traits

Response to selection

- · Current EBI:
 - > increasing calf price by €0.54 per annum
- · Including calf price:
 - > Increases calf price by a further €1.04 per annum to €1.58
 - > Little impact on current goal traits but did reduce genetic gain on production traits:
 - Milk: -7.08 kg
 - Fat: -0.18 kg
 - Protein: -0.19 kg
- · Genetic gain in overall profit likely to be reduced

Relative emphasis (%)

- · Little change in the overall emphasis on all traits
- · Reduced emphasis on the beef sub-index

Sub-index	Current EBI	With calf price
Milk	41	44
Fertility	30	32
Calving	8	8
Beef	15	9
Maintenance	3	3
Health	4	5

Conclusions

- Beef component of the dairy herd is an important factor in the EBI
- · The inclusion of calf price in the EBI:
 - > will not alter the response to selection for current goal traits dramatically
 - > will more accurately reflect on-farm profitability

