

ICAR Annual Meeting, Cork / Ireland (May 30, 2012)

Survey on the recording and use of functional traits in dairy management and breeding

K.F. Stock¹, J. Cole², J. Pryce³, N. Gengler⁴, A. Bradley⁵, L. Andrews⁶, C. Egger-Danner⁷

¹ Vereinigte Informationssysteme Tierhaltung w.V. (vit), Verden, Germany; friederike.katharina.stock@vit.de;

² Animal Improvement Programs Laboratory, ARS, USDA, Beltsville / Maryland, USA; ³ Department of Primary Industries, Victorian AgriBiosciences Centre, Bundoora / Victoria, Australia; ⁴ University of Liège, Gembloux Agro-Bio Tech (GxABT), Animal Science, Gembloux, Belgium; ⁵ Quality Milk Management Services Ltd, Westbury-sub-Mendip, Wells / Somerset, United Kingdom; ⁶ Holstein UK, Rickmansworth / Herts, UK; ⁷ ZuchtData EDV-Dienstleistungen GmbH, Vienna, Austria

WG functional traits

ICAR working group on "recording, evaluation and genetic improvement of functional traits in dairy cattle" (ICAR 2000)

- •supply member organizations of ICAR with <u>recommendations</u> (standards and guidelines) on recording schemes, evaluation procedures and genetic improvement schemes <u>for functional traits</u>
- •portfolio of recommendation sheets on recording, evaluation and genetic improvement for functional traits in dairy cattle
- → broader view: functional traits in cattle, i.e. dairy + beef

Recording & use of functional traits

- shifting focus of interest from production traits (milk yield, milk composition; weight gain) to functional traits, i.e. traits influencing production or production conditions
- "increasing importance of functionality in dairy farming"

issues:

- heterogeneous and often vague trait definitions,
- considerable differences in environment and recording conditions,
- non-standardized recording ("stand-alone solutions"),
- limited knowledge about international activities concerning
 functional traits

ICAR survey of WG functional traits

ICAR Survey (rationale)

- overview about current and future role of functional traits
- interpretations of functionality / functional traits in different countries
- plans and actions to improve functionality
- identification of needs and options for exchange of information and experiences
- possible support by the ICAR WG functional traits (expectations, working priorities)

Survey response

- official mailing list of ICAR
 - \rightarrow all ICAR member countries (N=52)
- total no. of countries responding: N=27

THANK YOU! N=2 countries without functionality improvement programs Chile. Greece

N=25 countries with functionality improvement programs

- only beef 1 country Australia
- only dairy 12 countries Argentina, Belgium, Canada, Denmark, Estonia, Hungary, Jersey Island, Korea, Norway, Poland, Romania, Uzbekistan
- dairy+beef 12 countries Austria, Croatia, Czech Republic, Finland, France*, Germany, Ireland, Lithuania, The Netherlands, Portugal*, Slovenia, South Africa

Survey basics

Groups of functional traits

- calving traits,
- fertility traits,
- longevity,
- feet & legs,
- indirect health traits, i.e. health traits based on indirect measures of diseases (for example somatic cells for mastitis),
- direct health traits, i.e. health traits based on direct disease information (for example veterinary diagnoses),
- others (milkability, temperament, BCS, feed intake)

Answering options

- project status ("will possibly", "will definitively"), routine
- room for comments, remarks, explanations, ...

Questionnaire (20 questions)

- General role of functional traits
- II. Direct health traits
- III. Other functional traits
- IV. Future perspective of functional traits

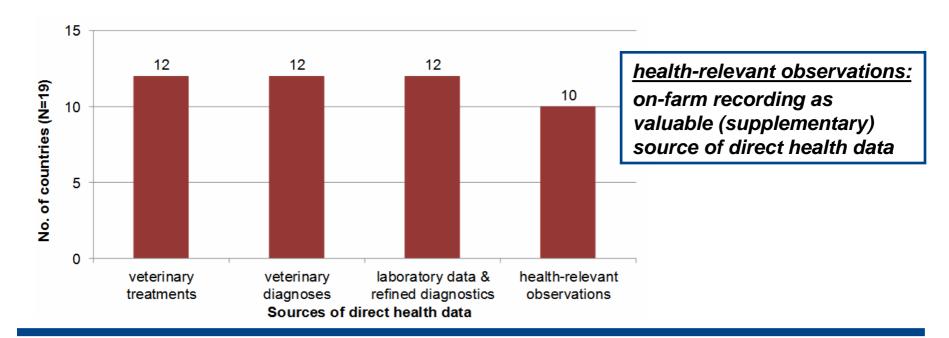
I. General role of functional traits

Genetic evaluations (EBV) and genomic evaluations (gEBV) for functional traits in 23 countries:

EBV P1 = possibly in the future, P2 = definitively in the future, R = routine;

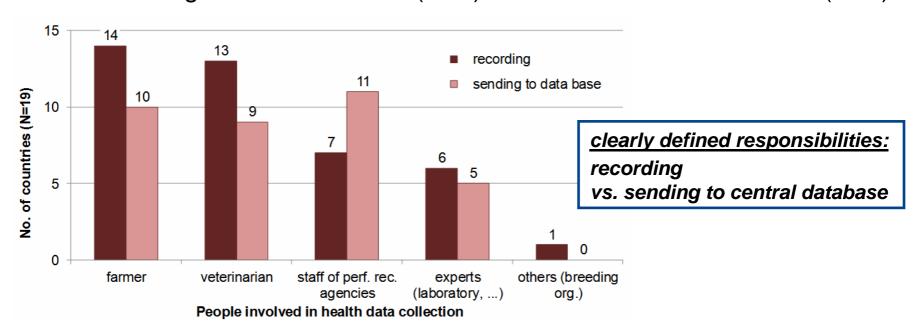
gEBV N = no, P = project status, R = routine

Group of functional traits	EBV P1 (gEBV N-P-R)	EBV P2 (gEBV N-P-R)	EBV R (gEBV N-P-R)
Calving traits	2 (2 - 0 - 0)	3 (2 - 1 - 0)	18 (5 - 4 - 9)
Fertility traits	2 (2 - 0 - 0)	1 (1 - 0 - 0)	20 (5 - 6 - 9)
Longevity	2 (2 - 0 - 0)	4 (3 - 1 - 0)	17 (5 - 4 - 8)
Feet and legs	2 (2 - 0 - 0)	3 (2 - 1 - 0)	17 (2 - 7 - 8)
Indirect health traits	0 (0 - 0 - 0)	2 (1 - 1 - 0)	20 (7 - 4 - 9)
Direct health traits	10 (10 - 0 - 0)	1 (0 - 1 - 0)	7 (1 - 4 - 2)
Others	0 (0 - 0 - 0)	0 (0 - 0 - 0)	5 (1 - 0 - 4)

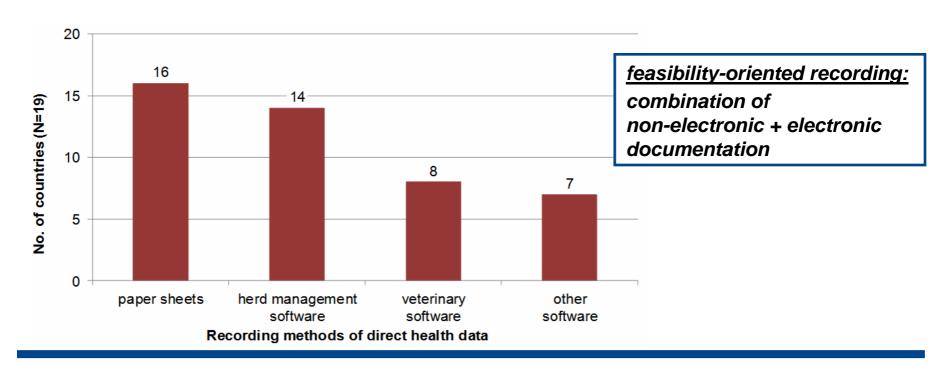


- general approach of health data collection
 - data sources (What ?, Who?, How?),
 - spectrum of health data,
 - aims of health data analyses
- health data analyses
 - current status,
 - primary target group,
 - structure of health reports,
 - genetic evaluations for direct health traits

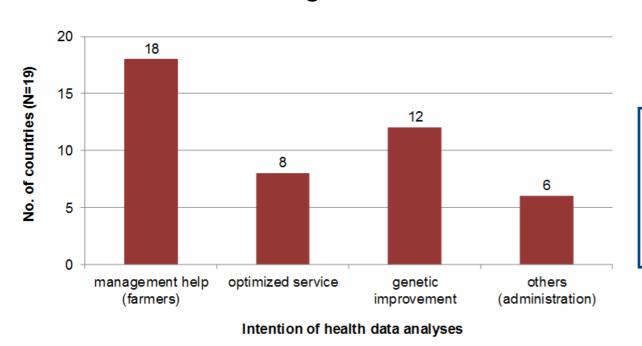
Data sources & contents


- basis of health monitoring systems (data)
 - single source (type) of health data: < 1/3 of countries
 - most frequent combinations: treatments & diagnoses (N=10)
 - > treatments & lab. data (N=8) > diagnoses & health obs. (N=7)

People involved in data collection


- basis of health monitoring systems (people)
 - single group of people involved: 1/3 of countries
 - most frequent combinations:
 recordingfarmer & vet. (N=10) > farmer or vet. & staff PRA (N=4)
 sending vet. & staff PRA (N=6) > farmer & vet. or staff PRA (N=5)

Methods of data collection


- basis of health monitoring systems (methods)
 - single method of recording: <1/3 of countries
 - most frequent combinations:
 paper & HM software (N=12) > paper & vet. software (N=8)

Data analyses & intentions

- spectrum of health traits (specificity)
 - few simple traits: <1/2 of countries</p>
 - broad range: 1 to >900 health traits
- short-term + long-term benefits of health monitoring

multi-purpose analyses: visible benefits of health monitoring ensuring continuing engagement of involved parties

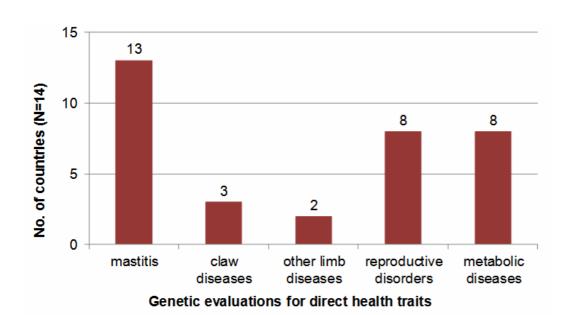
(motivation aspects)

Implementation of analyses

implementation status

- wide spread of health initiatives, but analyses mostly under development rather than routine
- health reports:
 primarily for farmers,
 vertical + horizontal statistics

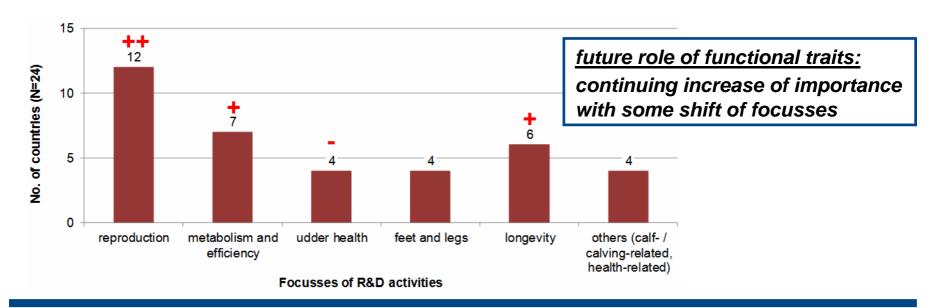
Type of statistics	No. of countries (N=20)
Within-herds (vertical) only	8
Between-herds (horizontal) only	1
Within-herds (vertical) + between-herds (horizontal)	10
Upon request	1


competitive aspects:

visible advantages over existing monitoring systems (herd management) ensuring continuous data flow

Breeding for improved health

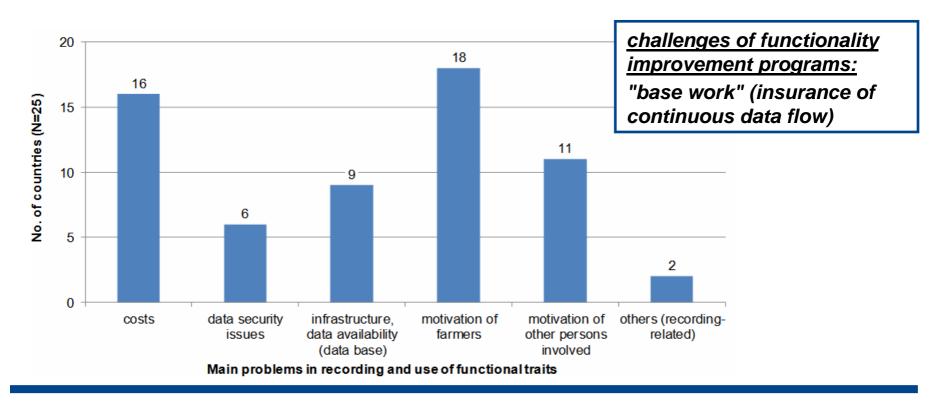
- genetic evaluations for direct health traits
 - trait spectrum (advanced projects, routines) influenced by data collection approaches
 - dominance of traits with close relation to production, under-representation of locomotory diseases


current role of health traits:

GE focusses ≠ disease focusses (main health problems)

III. Other functional traits / IV. Future perspectives Functionality and breeding

- EBV for functional traits
 - publication of EBV for up to 43 functional traits in 24 countries
 - expected increase in 20 of 23 countries
- areas of functionality with most intense R&D activities
 - expectations only partly reflecting needs for catching up



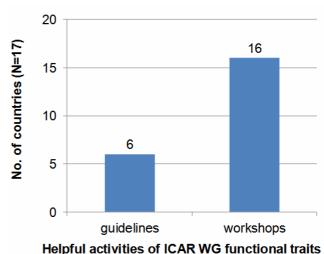
IV. Future perspectives

Functionality and role of ICAR

- main interferences with extended functionality orientation
 - implementation vs. continuation problems
 - options for ICAR activities?

IV. Future perspectives

Functionality and role of ICAR



- main interferences with extended functionality orientation
 - implementation vs. continuation problems
 - options for ICAR activities?

challenges of future WG work: coordination of expertise exchange

- possible support by ICAR WG functional traits
 - limited demand for guidelines for new groups of functional traits
 - organization of (multidisciplinary) workshops or seminars

ICAR Survey (conclusions)

- agreement on the still-increasing importance of functional traits and functionality improvement programs
- intense R&D activities, particularly in health traits
 - at least some plans of health data analyses in 24 of 27 countries
 - different approaches, but similar challenges → ICAR guidelines
- improvement prospects within established groups of functional traits
 - reproduction → ICAR guidelines
 - **—** ...
- request for specific ICAR workshops

Recent activities of the ICAR WG functional traits:

ICAR guidelines for Recording, Evaluation and Genetic Improvement of Health Traits ICAR guidelines for Recording, Evaluation and Genetic Improvement of Female Fertility (draft)

THANK YOU

WG functional traits

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

A

I C A R

ICAR WG functional traits appreciates your valuable contributions:

Argentina,

Australia,

Austria,

Belgium,

Canada,

Chile,

Croatia,

Czech Republic,

Denmark,

Estonia,

Finland,

France,

Germany,

Greece,

Hungary,

Ireland,

Jersey Island,

Korea,

Lithuania,

The Netherlands,

Norway,

Poland, Portugal,

Romania,

Slovenia,

South Africa,

Uzbekistan

2014

IDF/ISO Analytical Week and ICAR/INTERBULL Conference

Germany | Berlin

IDF/ISO 15-20 May

ICAR 19–23 May

Interbull 20–21 May

www.icar2014.de

Supported by:

Federal Ministry of Food, Agriculture and Consumer Protection

based on a decision of the Parliament of the Federal Republic of Germany