ICAR 2014 Conference, Berlin / Germany (May 19-23, 2014)

Harmonization of recording and use of direct health data as basis of sustainable improvement of dairy health and longevity

K.F. Stock¹*, J.B. Cole², J.E. Pryce³, N. Gengler⁴, A. Bradley⁵, B. Heringstad⁶, L. Andrews⁷, C. Egger-Danner⁸

¹ Vereinigte Informationssysteme Tierhaltung w.V. (vit), Verden, Germany; ² Animal Improvement Programs Laboratory, ARS, USDA, Beltsville / Maryland, USA; ³ Department of Environment and Primary Industries and La Trobe University, Agribio, Bundoora / Victoria, Australia; ⁴ University of Liège, Gembloux Agro-Bio Tech (GxABT), Animal Science, Gembloux, Belgium; ⁵ Quality Milk Management Services Ltd, Wells / Somerset, United Kingdom; ⁶ Norwegian University of Life Sciences, Department of Animal and Aquacultural Sciences, Ås, Norway; ⁷ Holstein UK, Rickmansworth / Herts, United Kingdom; ⁸ ZuchtData EDV-Dienstleistungen GmbH, Vienna, Austria

* Email: friederike.katharina.stock@vit.de
Dairy health & longevity

- functional traits as integral parts of dairy breeding programs
- increasing weights on functionality aspects in selection indices
- improved trait definitions for more targeted breeding progress
 - direct rather than indirect traits
 - specific rather than global traits
- direct health traits and health monitoring
 - productivity and production efficiency / profitability (economics)
 - animal welfare and responsibility (politics, public reputation)
 - transparency and reliability (food safety, product quality)
Health data recording (I)

- different starting points
 - long tradition of health improvement programs in Scandinavia (Norwegian Cattle Health Recording System since 1975)
 - more recent implementation of routines for direct health traits in some other countries
 - remarkable R&D activities worldwide to consider direct health traits in future dairy breeding programs
Health data recording (II)

• different starting points
 – ...
 – remarkable R&D activities worldwide
to consider direct health traits in future dairy breeding programs

• similar general framework
 – decreasing heterogeneity of legal requirements,
increasing pressure on the whole livestock sector
 – need for new traits for targeted improvement of dairy health,
few settled routines for working with disease information
 – standardization & harmonization of phenotype data collection
 as basis of reliable genetic and genomic evaluations
ICAR working group on "recording, evaluation and genetic improvement of functional traits in dairy cattle" (FTWG; ICAR 2000)

- recommendations (standards and guidelines) on recording schemes, evaluation procedures and genetic improvement schemes for functional traits
- portfolio for functional traits in dairy cattle
- FTWG activities / working focusses 2011-2014
 - direct health traits
 guidelines (approved 2012), health data conference (2013)
 - female fertility
 guidelines (2013)
 - feet and legs (claw health / use of claw trimming data)
 information collection, overview
Health guidelines

• health traits in the focus of work of FTWG in 2010/2011
 → **ICAR guidelines for Recording, Evaluation and Genetic Improvement of Health Traits** (approved in 2012)

• starting point
 – existing health data recording systems with different approaches
 → heterogeneity of recording schemes (broad range of number of traits with 1 to > 900 documentation options)
 – worldwide distributed experience with little exchange, sparse interdisciplinary collaboration

Who is documenting? → veterinarians, farmers, staff of performance recording agencies, claw trimmers, ...

What is documented in which context? → veterinary diagnoses (reasons for drug use), disease observations during routine work on farm, ...

Specific challenges of the recording approach → legal framework (obligatory vs. facultative documentation), motivation / personal interests of thorough documentation, ...
Health data conference

- requested support by ICAR FTWG
 - guidelines
 - direct exchange (workshops, ...)
- concept
 - interdisciplinary
 - broad coverage
 (management / animal husbandry, veterinary medicine, breeding, research, politics and society)
 - visualization of collaboration options
- response:
 about 145 participants from >30 countries
ICAR 2013 Health Data Conference

Conference topics

Programm I
Thursday, 30th of May, 2013 – Joint sessions with ICAR Technical Workshop

- Welcome and introduction: 13:30 – 13:45
 ICAR - President
 Chairperson ICAR - FTWG
 Chair: O. Hansen
- General aspects – Part 2: 16:00 – 18:00
 Chair: N. Gengler

Programm II
Friday, 31st of May, 2013

- Logistics of recording: 08:00 – 10:00
 Chair: J. Cole
- Data validation: 10:30 – 12.30
 Chair: J. Pryce
- Benefits: 14:00 – 16.00
 Chair: K. Stock
- Roundtable - Wrap up and conclusion: 16:30 – 18.00
 Chair: C. Egger-Danner

Pavon, S. (European Comm. DG Health & Consumer Protection)
Putz, M. (Bay. Staatsmin. für Ernährung, Landwirtschaft & Forsten / GER)
Frandsen, J. (Knowledge Centre for Agriculture / DK)
Dupont, N.H. (Univ. of Copenhagen, Faculty of Health & Medical Sci. / DK)
Pryce, J. (Dept. of Primary Industries, Agribio / AUS)
Gengler, N. (Gembloux Agro-Bio Tech, Univ. of Liège / BEL)
Pinard, M. (Animal Genetics Division, INRA / FRA)
Stock, K. (vit / GER)
Kyntäjä, J. (Agricult. Data Processing Centre Ltd. / FIN)
Maltecca, C. (North Carolina State Univ. / USA)
Van 't Land, B. (CRV / NL)

Emanuelson, U. (Swedish Univ. of Agricult. Sci., Dept. of Clinical Sci. / SWE)
Egger-Danner, C. (ZuchtData EDV-Dienstleistungen GmbH / AUT)
Kelton, D. (Univ. of Guelph & Strategic Solutions Group / CAN)

Clay, J. (Dairy Records Management Systems / USA)
Obritzhauser, W. (Univ. of Veterinary Medicine Vienna / AUT)
Bradley, A. (Quality Milk Management Services Ltd. / UK)

Lefebvre, D. (Valacta / CAN)
David, X. (Unceia / FRA)
Hansen, M. (dairy farmer / DK)
Mansfeld, R. (LMU München / GER)
Moder, S. (Bundesverband prakt. Tierärzte / GER)
ICAR 2013 Health Data Conference

Conference outcome

• agreement regarding the important role of animal health and the challenges related to working with health data
 – legislation, information / transparency, data security
 – data recording and logistics
 – data quality, validation, data processing and analysis

• ICAR health guidelines as up-to-date international standard, applications benefitting from interdisciplinary exchange of experiences, transparency and harmonization

• intensification of collaborative efforts to establish sustainable concepts for animal health improvement
 – practical feasibility → broadening of health monitoring
 – long-term strategy (management, breeding; international perspective)
Data integration

- no lack of direct health information on individual animal basis, but limited accessibility for analyses
- new phenotypes (in breeding) = appropriate data collection + optimized usage of data

<table>
<thead>
<tr>
<th>Type of data</th>
<th>Data source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnoses of diseases - requiring medical treatment</td>
<td>veterinarian, farmer</td>
</tr>
<tr>
<td></td>
<td>veterinarian, farmer</td>
</tr>
<tr>
<td>Claw health information</td>
<td>claw trimmer, farmer</td>
</tr>
<tr>
<td>Reproduction data</td>
<td>inseminator, veterinarian, farmer</td>
</tr>
<tr>
<td>Outcome of special veterinary examinations</td>
<td>veterinarian, laboratory, farmer</td>
</tr>
<tr>
<td>Calving related disorders (cow, calf)</td>
<td>farmer</td>
</tr>
<tr>
<td>Culling reasons</td>
<td>farmer</td>
</tr>
<tr>
<td>Post mortem diagnoses</td>
<td>slaughterhouse</td>
</tr>
</tbody>
</table>
Trait definitions

• disease information, i.e. diagnoses, as primary basis for defining direct health traits (+ prerequisite for identification and calibration of biomarkers)

• certain findings and measurements as supplementary sources of information
 – observational (e.g. lameness)
 – automated screening
 – follow-up of suspicious cases
Health traits in dairy breeding

Genetic evaluations (GE=routine, R&D=prospected) for direct health traits:

<table>
<thead>
<tr>
<th>Country</th>
<th>UDDER HEALTH</th>
<th>FEMALE REPRODUCTION</th>
<th>METABOLIC HEALTH</th>
<th>HEALTH OF FEET & LEGS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GE R&D</td>
<td>GE R&D</td>
<td>GE R&D</td>
<td>GE R&D</td>
</tr>
<tr>
<td>Austria *</td>
<td>U1</td>
<td>R1,R3</td>
<td>R4</td>
<td>M1,M4</td>
</tr>
<tr>
<td>Canada</td>
<td>U1</td>
<td>R3,R4,R5</td>
<td>M1,M2,M3</td>
<td>F2,F1</td>
</tr>
<tr>
<td>Denmark, Finland, Sweden</td>
<td>U2</td>
<td>R1,R2</td>
<td>M1,M2</td>
<td>F3,F1</td>
</tr>
<tr>
<td>Germany</td>
<td>U3,U4</td>
<td>R4,R6</td>
<td>M1,M2,M3</td>
<td>F1</td>
</tr>
<tr>
<td>France</td>
<td>U1</td>
<td></td>
<td></td>
<td>F1</td>
</tr>
<tr>
<td>Norway</td>
<td>U1</td>
<td>R4</td>
<td>M1,M2</td>
<td>F1</td>
</tr>
<tr>
<td>Switzerland</td>
<td>U1</td>
<td>R7</td>
<td>M4</td>
<td>F3</td>
</tr>
<tr>
<td>The Netherlands</td>
<td>U1</td>
<td>R7</td>
<td></td>
<td>F1</td>
</tr>
<tr>
<td>USA</td>
<td>U1</td>
<td>R3,R4,R5</td>
<td>M2,M3</td>
<td>F2</td>
</tr>
</tbody>
</table>

U1 mastitis, U2 clinical mastitis, U3 early mastitis, U4 late mastitis;
R1 early reproduction disorders, R2 late reproduction disorders, R3 cystic ovaries, R4 retained placenta, R5 metritis, R6 ovary cycle disturbances, R7 fertility-related disorders / reproduction disorders;
M1 milk fever, M2 ketosis, M3 displaced abomasum, M4 metabolic disorders;
F1 claw diseases (e.g. digital dermatitis, sole ulcer), F2 lameness, F3 feet and leg diseases

* joint GE for Austrian German Fleckvieh and Brown Swiss
Health traits in dairy breeding

Genetic evaluations (GE=routine, R&D=prospected) for direct health traits:

<table>
<thead>
<tr>
<th>Country</th>
<th>UDDER HEALTH</th>
<th>FEMALE REPRODUCTION</th>
<th>METABOLIC HEALTH</th>
<th>HEALTH OF FEET & LEGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>U1</td>
<td>R1,R3,R4</td>
<td>M1,M4</td>
<td>F2,F3</td>
</tr>
<tr>
<td>Canada</td>
<td>U1</td>
<td>R3,R4,R5</td>
<td>M1,M2,M3</td>
<td>F2</td>
</tr>
<tr>
<td>Denmark, Finland, Sweden</td>
<td>U2</td>
<td>R1,R2</td>
<td>M1,M2</td>
<td>F3,F1</td>
</tr>
<tr>
<td>Germany</td>
<td>U3,U4</td>
<td>R4,R6</td>
<td>M1,M2,M3</td>
<td>F1</td>
</tr>
<tr>
<td>France</td>
<td>U1</td>
<td></td>
<td></td>
<td>F1</td>
</tr>
<tr>
<td>Norway</td>
<td>U1</td>
<td>R4,R7</td>
<td>M1,M2</td>
<td>F1</td>
</tr>
<tr>
<td>Switzerland</td>
<td>U1</td>
<td>R7</td>
<td>M4</td>
<td>F3</td>
</tr>
<tr>
<td>The Netherlands</td>
<td>U1</td>
<td></td>
<td></td>
<td>F1</td>
</tr>
<tr>
<td>USA</td>
<td>U1</td>
<td>R3,R4,R5</td>
<td>M2,M3</td>
<td>F2</td>
</tr>
</tbody>
</table>

U1 mastitis, U2 clinical mastitis, U3 early mastitis, U4 late mastitis; R1 early reproduction disorders, R2 late reproduction disorders, R3 cystic ovaries, R4 retained placenta, R5 metritis, R6 ovary cycle disturbances, R7 fertility-related disorders / reproduction disorders; M1 milk fever, M2 ketosis, M3 displaced abomasum, M4 metabolic disorders; F1 claw diseases (e.g. digital dermatitis, sole ulcer), F2 lameness, F3 feet and leg diseases * joint GE for Austrian German Fleckvieh and Brown Swiss
Conclusions

• still relatively few established GE routines for direct health traits, further growing R&D activity

• confirmation of recommended concepts
 – success of collaborative, interdisciplinary and integrative approaches
 • agricultural sector (breeding, milk recording, farmers, ...)
 • veterinarians
 – development towards refined trait definitions (reproduction, feet and legs)

• continuing support of ICAR FTWG
 – universal references (comprehensive recording standards and guidelines)
 – workshops on special topics

sustainable international dairy breeding with improved selection for healthy and durable cows
THANK YOU