

IT-Solutions for Animal Production

Two years of experience with genomics - how well does it work ?

Dr. Stefan Rensing Vereinigte Informationssysteme Tierhaltung w.V.(**vit**), Verden/Germany ICAR Meeting 2012, Cork/Ireland

vit

Introduction

Genomics:

Completely new breeding technology

- High impact on breeding schemes
 - Organizations
 - Farmers

Farmers have to believe

- No historical experience i.e. 'public' validation
- Animal proofs are not based on own/daughter performances
 - No 'real' individual measures
 - No animal with performance seen

comprehensible validation essential

vit

Validation of genomics

Method before introduction:

- Reduce reference population and verify on the excluded bulls
 - Difficult/un-reliable with small reference populations
- National: for all traits ?
- International (ICAR/Interbull): official only for production traits
 - Totally 21 country*breed genomic systems validated
 - 12 already since Aug. 2010 (thereof 8 HOL)

Method after official introduction:

- Compare earlier <u>published</u> 'pure' genomics with later <u>published</u> daughter based gEBV
- Advantage: reality
- Disadvantage:
 - needs time for late-occurring/low-heritable traits
 - Includes model changes

		the information requested and passed to ma, which describe national genomic e	
Canada	Holstein	Canadian Dairy Network (CDN)	Aug 25
Denmark, Fisland, Sweden	Holstein	Nordic Genetic evaluation (NAV)	Aug 2
France	Holstein	France Génétique Elevage	Aug 25 Aug 2
France	Montbéliand	France Génétique Elevage	Aug 2
Germany	Holstein	Vereinigte Informationssysteme Tierhaltung w.Y (VII)	Aug 25 Jun 2
Germany, Austria	Simmental	Bavarian State Research Center for Agriculture (LTL)	Jun 2
Ireland	Holstein	Irish Cattle Breeding Federation	Aug 2
Raly	Holpfein	Associazione Nazionale Allevatori Frisona Italiana (ANAFI)	Jun 2
Japan	Holstein	National Livestock Breeding Centre	August
Poland	Holstein	Polish Federation of Cattle Breeders and Dairy Farmers	Aug 2
New Zosland	Holstein, Jersey	Livestock Improvement Co. (LIC)	Aug 2
Switzerland	Brown Swiss, Holstein, Red Holstein	Qualitas AG	Jun 2
The Netherlands/Flanders	Holstein	Genetic Evaluation Sires (GES)	Aug 20
United States	Holstein, Jersey	Animal Improvement Programs Laboratory (APL-USDA)	Aug 25 Nov 2
United States	Brown Swiss	Animal Improvement Programs Laboratory (APL-USDA)	Nov 20 Nov 2
Great Britain	Holstein	Scottish Agricoltural College (SAC)	Nov 2
Germany Austria	Brown Swiss	Bavanan Dtate Research Center for Agriculture (LfL)	Nov 2
naty	Simmental	Associazione Nazionale Allevatori Pezzata Rossa Italiana (ANAPRI)	Nov 2

German Holstein genomics

- gEBV for Holsteins officially published since August 2010
 - EuroGenomics reference population >23,000 bulls (>6,500 with German daughters)

Rel. % young candidates	sire-P.I.	gEBV	daughter equivalent	
Production	31%	73%	ca. 50 with 3 tests	
Somatic Cell Score	31%	76%	ca. 85 with 3 tests	
Conformation	28%	57%	ca. 25	
Herd Life	26%	52%	ca. 100 1st +70 2nd La	
Daughter Fertility	25%	43%	ca. 80 in 1st La	
Calving Ease	33%	53%	ca. 40 calvings	
Milking Speed	24%	61%	ca. 30	
Total Merit RZG	29%	65%		

Realistic reliabilities

- No international harmonization how to calculate reliabilities for gEBV
- National reliabilities for gEBV of young bulls not always correspond with quality of reference population

Validation of gEBV in practice

- 199 Holstein bulls with genomic proofs in 12-2010 (and first daughter proof in 04-2011)
- have in 04-2012 their 4th daughter proof i.e. with high reliability

n=199	gEBV 1012*	gEBV 1204	Diff.
rel. (daug.) milk/SCS	73.9% (0)	93.2% (114.3)	
Prododuction index RZM	0.52	0.47	-0.06
RZS (SCS)	0.39	0.34	-0.05
Total conformation RZE	0.80	0.78	-0.02
Herd life RZN	0.79	0.71	-0.07
Daughter fertility RZR	0.18	0.10	-0.09
rel. total merit index RZG	68.7%	83.0%	
Total Merit RZG	1.04	0.91	-0.13

<u>Scale:</u> genetic standard deviations <u>Base 2012:</u> bulls born 2002-2004

*) shift of base in 04-2011 corrected

- German HOL genomics approve with many daughters in average very good
 - Difference < 0.1 genetic standard deviation

04-2012: 4th daughter based poof incl. Ø 114.3 daughters (Ø rel. 93.2%)
Difference Ø -0.06 s_q; deviation of individual bulls Ø ± 0.63 s_q

04-2012: 4th daughter based poof incl. Ø 59.6 daughters (Ø rel. 81.0%)
Difference Ø -0.02 s_q; deviation of individual bulls Ø ± 0.57 s_q

04-2012: 4th daughter based poof incl. Ø 114.3 daughters (Ø rel. 86.8%)
Difference Ø -0.05 s_q; deviation of individual bulls Ø ± 0.42 s_q

- 04-2012: 4th daughter based poof , \varnothing rel. 49.6%
- Difference \varnothing -0.09 s_g; deviation of individual bulls \varnothing ± 0.32 s_g

- 04-2012: 4th daughter based poof, \emptyset rel. 56.0%
- Difference \varnothing -0.07 s_a; deviation of individual bulls \varnothing ± 0.30 s_a

- 04-2012: 4th daughter based poof, \varnothing rel. 83.0%
- Difference \varnothing -0.13 s_g; deviation of individual bulls \varnothing ± 0.59 s_g

Validation of genomics in practice

- Validation of genomics in practice:
 - Is simple and comprehensible
 - Latest one year after official introduction
 - Should focus not only on average of all bulls, but on validation of top bulls
 - ► → why not published in more countries ?
- Validation of German Holstein genomics in practice:
 - German gEBV of young Holstein bulls are realistic and unbiased
 - For all traits
 - For top genomic bulls

Guarini

(Goldwin x O-Man) 12-2010 = 0 daug.: RZG 143 04-2012 = 151 daug.: RZG 145

Conclusions

- German gEBV for young bulls are fully comparable to daughter proofs
- selection can/should be done across young and daughter proven bulls
- young bulls should take big market share
 - Because they offer much higher overall genetic level
 - Selected 1 out of 50-100 (10,000 bull calves tested per year in Germany)
 - instead of 1 out of 10-15 (1,000 bulls daughter proven per year in Germany)
 - Because they are more complete
 - less 'compromises' when A.I. studs buy a bull
 - especially for functional traits

Laron P (Lawn Boy x Shottle) born 2008 RZG 137 RZM 116 RZE127 RZS 116 RZN 128 RZR 112

Pioneer (Planet x Shottle) born 2009 **RZG 143** RZM 120 RZE 127 RZS 119 RZN 134 RZR 111

Conclusions

- selection can/should be done across young and daughter proven bulls \rightarrow
- → young bulls should take big market share
 - The key is that farmers (can) believe in genomics !
 - Validation of genomics in practice are therefore crucial

In Germany significant increase of market share young bulls

after validation in practice i.e. one year after first release

IT-Solutions for Animal Production

IDF/ISO Analytical Week and ICAR/INTERBULL Conference

Germany | Berlin

IDF/ISO 15–20 May ICAR 19–23 May Interbull 20–21 May

www.icar2014.de

Supported by:

Federal Ministry of Food, Agriculture and Consumer Protection

based on a decision of the Parliament of the Federal Republic of Germany