

ICAR meeting 2009

State of the art of genomic evaluation and international implications

Reinhard Reents

vit, IT solutions for Animal Prduction Chairman of the Steering Committee of Interbull

Knowledge about genomics

- Watson und Crick 1953 Model of double helix \rightarrow
 - (structure of DNA where two chains are held together by hydrogen bonds in a double spiral)

But no information about effect of individual genes/animals:

Selection from about 1960 to ~ 2000

- Quantitativ-genetic concepts
 - (Wright, Lush, Henderson)
 -> additiv genetic model
- Genetic evaluation
 - Separate phenotypic observations (eg 9850 kg milk) in
 - additiv genetic effect → estimated breeding value (eg. + 1430 kg M)
 - Systematic environmental effect
 - Residual effect
- Ranking based on estimated breeding values (EBVs)

Selection based on EBVs

- Necessary elements
 - Phenotypic observations
 - Milk yield, somatic cell counts, type traits, etc.
 - Pedigree data
 - Data structure (across herds/environments)
 - Artificial insemination gives optimal structure to estimate EBVs that rank the animals best and unbiased in many environments
 - Algorithms (Henderson, Schaeffer&Kennedy, Misztal, etc) and computing power
 - ➔ BLUP methodology, which result in highly reliable EBVs (85-99%) for bulls with a progeny test of 100-150 daughters
 - ➔ Transformation of these EBVs since 15 years via Interbull MACE
 - → Bulls that are marketed worldwide

Genetic trend in German Holstein bulls

EBV Mkg

Year of birth of AI bulls

- Genetic gain / costs
 - High generation interval due to progeny test
 - → Expensive
 - → Genetic gain per year not very high
 - Reliability of a pedigree index (=0,5 EBV sire + 0.5 EBV dam) is low (25 35%)
 - Reliability of a cow EBV < lower as r² of a bull EBV
- Aim:
 - Increase of reliability of young animals
- Solution \rightarrow use of genomic informationn

A	

SNP - genotyping

Ī							
 SNP = Single-nucleotide polymorphism Genotype = Which alleles of the nucleotides A-T,C-G an animal carries Genome = contains 3 billion base pairs Ca. 50.000 SNPs at a cost of about 200 EUR 							
							Genotype:
Tier 1:	AGGCACC AGGCACC	GCAATCCACG GCAATCCACG	GAGGCTACGC GAGGCTACGC	CCTCACCGGA CCTCACCGGA	GGTTTCGCTC GGTTTCGCTC	TCCACGG TCCACGG	тт
Tier 2:	AGGCACC AGGCACC	GCAATCCACG GCAATCCACG	gaggc A acgc gaggc <mark>A</mark> acgc	CCTCACCGGA CCTCACCGGA	GGTTTCGCTC GGTTTCGCTC	TCCACGG TCCACGG	AA
Tier 3:	AGGCACC AGGCACC	GCAATCCACG GCAATCCACG	gaggc <mark>T</mark> acgc gaggc <mark>A</mark> acgc	CCTCACCGGA CCTCACCGGA	GGTTTCGCTC GGTTTCGCTC	TCCACGG TCCACGG	ΑΤ
Tier n:	AGGCACC AGGCACC	GCAATCCACG GCAATCCACG	gaggc <mark>A</mark> acgc gaggc <mark>A</mark> acgc	CCTCACCGGA CCTCACCGGA	GGTTTCGCTC GGTTTCGCTC	TCCACGG TCCACGG	AA
		Eg positio	n on Chroi	mosom 6 ‡	¢ 43.675.2	39	vit 🖬

Illumina cattle SNP-Chip: BovineSNP50 Beadchip

	Number of SNPs:	54.001
•	Eg informative in Holsteins:	42.730
•	Ø distance between 2 SNPs (n base-pairs):	51.500
	Minimum distance (n base pairs):	20.000
•	Amount of DNA needed: eg. 1 ml blood contains 1 dose of sperm contains (10 roots of a hair contain	> 2 µg ~ 200 µg ~ 50 µg ~ 1 µg)

1356527011

@2008, Illumina Inc. All rights reserved.

Use in practical application

Lab is an important part, BUT SNP data has per se no information on ,traits'

Steps:

- Genotype animals that have reliable EBVs from ,conventional' genetic evaluation
- Calculate regression formulas so that SNPs explain well the conventional EBV
- Use the regression formulas derived by historic data to evaluate young animals
- Select among these young animals

Available data, r² for different traits in German Holsteins (n= ~ 700, > 500 daughters)

Modell genomic evaluation – quality of results

- Quality of phenotypic data: conventional breeding value estimation
 Importance of conventional EBV
- Estimation of SNP-effetcs using "informative" reference group
 - The more sires, the more accurate SNP-effects estimates
- Application of SNP-effects on young animals

Size of reference sample, van Raden, IB meeting, June 2008

Gain in reliability over PA in US

B	Bulls	R ² for Net Merit			
Predictor	Predictee	PA	Genomic	Gain	
1151	251	8	12	4	
2130	261	8	17	9	
2609	510	8	21	13	
3576	1759	11	28	17	
				vit 🖌	

Open questions:

- Realistic reliability of DGV ?
- If and how to combine DGV with conventional pedigree EBVs?

Increase in reliability of the BVs: AI bulls

KB-Bulle Milchmenge

Alter (Jahre)

KB-Bulle Nutzungsdauer

Alter (Jahre)

Increase in reliability of the BVs: cows

Kuh Milchmenge

Alter (Jahre)

Kuh Nutzungsdauer

Spectrum for practical application

- 1. Selection of young sires for A.I.
 - selection of young sires based on GEBV
 - Conventional progeny test follows
- 2. Selection of bull dams
 - selection & mating of bull dams based on DGV/GEBV
- 3. Selection of sires in A.I.
 - selection of sires in A.I. based on GEBV
 - Sires age: 1 year, semen unlimited available
 - Bulls without a progeny test → acceptance by farmers?
 - Increased use of natural service sires that do have a GEBV instead of AI bulls?
- 4. Selection of sire of sons
 - Sire of sons genomic proven without progeny test
- 5. Selection of cows
 - Realistic if low density SNP-chip (cost-effective) available genotype environment interaction???

Status quo on country level: genomic selection (Jan 2009)

country	Project started	chip	Size of reference population	GEBV	Official Implementation	Internal Implementation
USA	2003	Illumina	4.422 sires + 947 cows	\checkmark	Jan. 2009	2008
CDN	2003	Illumina	4.127	\checkmark	April 2009 ?	?
NZL	2005	Illumina	1450	\checkmark	2010 ?	(Aug. 2008)
AUS	2005	Illumina	1.600	√(?)	2010 ?	
NLD	2005	MG1 / MG2	1.500	\checkmark	2009 ?	Aug. 2008
FRA	2007	Illumina	1.750	(MAS+ gZW)	?	Fall 2008
DFS	2007	Illumina	2.012	?	?	Aug. 2008
(DEU /HOL)	2008	Illumina	3.000	\checkmark	2010	vit

Summary

- Genomic evaluation is a very useful additional tool, but it can only be used if
 - Large amount of phenotypic data is collected on the traits of interest
 - Reliable pedigree information
 - Sophisticated conventional genomic evaluation
- Potential of genomic evaluation can only be gathered if MORE phenotypic data is collected
 - Functional traits (well defined eg by the ICAR WG ,Functional Traits')
 - New traits → e.g. composition of milk
- Many options how to use this tool in breeding programes have still to be examined

Discussion on the methodology

INTERBUI

Interbull / ICAR meeting 27.1. - 30.1.2009

- Interbull workshop (27. 28.1.2009, 101 participants)
 - Report Task Force (\rightarrow 7 experts from genetic evaluation centres)
 - Summary of the questionnaire
 - Conclusions and recommendations from the discussion groups
- Interbull Steering Committee (29.1.)
- ICAR Ex. Board (30.1.)

Results Interbull Workshop 27.1. - 28.1.2009

- Report Task Force Genomic Evaluation
 - Methodology works
 - but: assignment of an unbiased reliability measure for the genomic EBVs is not achieved yet → clear tendency to overestimate the r²
 - Approximation of r²: use prediction formula for group of bulls with genotypes and conventional EBVs, but were **not** part of the reference population
 → basis of validation procedure
- Results from the questionnaire
 - 20 countries use → Illumina Bovine SNP50 BeadChip
 - Holland

→ Customized Illumina 60K BeadChip

Norway

→ Affymetrix

Participants identified need for new Interbull services

All countries

- Express the wish to share knowledge and improve the methodology within the Interbull framework
 - Documentation of
 - Description of the methodology applied
 - Data used, publication rules within country, etc.
 - \rightarrow To be published by Interbull like methods for conventional genetic evaluation
- Urgent need for Interbull validation procedure
 - Genomic evaluation system → unbiased DGV and GEBV
 - Unbiased r² for DGV and GEBV

 \rightarrow Both relevant for approval within EC

Specific Interbull services: a) countries with own genome programe

Urgent need for services

- Conversion of DGV and/or GEBV on other countries scales
- GMACE
- Logistic for exchange of SNP genotypic data within the Interbull framework

MACE

Data

EBV

MACE

25. Mai 2009

Specific Interbull services: b) countries without an own genome programe

Seek implementation directly within Interbull sharing data from several countries/populations

- Increase size of reference sample
- Decrease costs for technical implementation
 - IB hosts genomic SNP data
 - IB derives prediction formulas
 - Calculates DGV for these countries Interest from
 - » 'smaller' european countries \rightarrow Holstein
 - » Brown Swiss breeders from several countries

Interbull Steering committee decisions

- Recognition of neutral, unbiased statistics from Interbull has to be maintained
 - Any recommendation for use of DGV/GEBV can only be granted after the validation test has been passed
- Validation test shall be developed by the IB Task Force until summer 2009
 - Approval at the Interbull Barcelona meeting in August 2009
- Steps for implementation
 - A) use of Interbull conversion formulas (summer/fall 2009)
 - B) GMACE (beginning of 2010)
 - C) develop a plattform that allows exchange of SNP 0/1 data for pairs of countries (2010/2011)
 - D) a position of a PostDoc for implementation of this technology is to be filled

ICAR board

- Results of the Interbull workshop will be summarised and transmitted to the EC
- No use of DGV/GEBV with the label of Interbull can be done before a successful validation (→ 2nd half of 2009)
- On an interim basis DGV/GEBV have to be labeled

Summary

- Significant impovement of the methodology during the last 12 months
- Very successful meeting in Uppsala in January 2009
- Large breeding programes want to cooperate in several areas
 - Improvement of the methodology
 - Sharing genotypes of the reference sample
- Small countries / populations seek implementation of the complete system within Interbull centre
- Interbull has made a strategic plan to introduce this new technology into its portfolio

Thank you for your attention

25. Mai 2009

