Genomics – what does the future hold for dairy farmers?

Jennie Pryce, Ben Hayes, Mike Goddard
• Question: Is anything 300,000 times cheaper now than in 2000?

No. ~ 5 times cheaper (depending on what you buy)
• Question: Is anything 300,000 times cheaper now than in 2000?

No. ~ 3 times cheaper
(if you’re lucky)

No. ~ 2000 times cheaper
Sequencing technology

Cost of sequencing a genome ($)
- **2003**: 300,000,000
- **2007**: 1,000,000
- **2012**: $1,000

Scientific American (January, 2012)

Sequencing of individual human genome

- Blood sample provided from Dr. James D. Watson in 2005
- Intent is to make data available once high quality assembly has been achieved and ethics issues addressed
- 2/3 of project sequenced on production FLX instruments during January 2007
- Run Statistics:
 - Total of 40,689,527 reads (40.7M)
 - Total of 10,184,424,158 bases (10.2B)
 - Average read length 251 bp
- Data analysis performed by The Baylor Human Genome Center
Capturing the benefits for the dairy industry

➢ Improve profitability of dairy cattle
 o Fertility
 o Production
 o Feed conversion efficiency
 o Survival
 o Disease resistance

➢ Decrease environmental impacts
 o Reduce methane emissions per litre milk
How?

• Find differences between animals in sequence (DNA code) which cause variation in these traits
How?

• Find differences between animals in sequence (DNA code) which cause variation in these traits

• Use this to
 ➢ predict breeding values for bulls and cows
 ➢ select on these

• Potential to select bulls and cows for breeding early in life, accelerate genetic gain

• Sequence data will be used in the future, SNP chips are used now
 • Sequencing of key ancestors already happening
1,000 Bull Genomes Project

• Membership
 • Groups that have sequenced bulls or cows of any breed can add to sequence database

• 151 bulls + 1 cow to date
 • Holstein, Fleckvieh, Jersey, Reds, Angus

• 400 expected by end of year

• Global effort!
<table>
<thead>
<tr>
<th>Name</th>
<th>Fold coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starlite</td>
<td>12.8</td>
</tr>
<tr>
<td>Shotime</td>
<td>11.9</td>
</tr>
<tr>
<td>Goldsmith</td>
<td>11.8</td>
</tr>
<tr>
<td>Gravita</td>
<td>15</td>
</tr>
<tr>
<td>Orana</td>
<td>9.5</td>
</tr>
<tr>
<td>Beau</td>
<td>12</td>
</tr>
<tr>
<td>OVGM</td>
<td>12.3</td>
</tr>
<tr>
<td>Goldwyn</td>
<td>22.7</td>
</tr>
<tr>
<td>Starbucks</td>
<td>30.3</td>
</tr>
<tr>
<td>Rameses</td>
<td>12.4</td>
</tr>
<tr>
<td>Donor</td>
<td>15.4</td>
</tr>
<tr>
<td>Donante</td>
<td>17.1</td>
</tr>
<tr>
<td>Mountain</td>
<td>18.9</td>
</tr>
<tr>
<td>Enhancer</td>
<td>16.8</td>
</tr>
<tr>
<td>Yukon</td>
<td>19</td>
</tr>
<tr>
<td>Gibbon</td>
<td>17</td>
</tr>
<tr>
<td>Jocko</td>
<td>15.1</td>
</tr>
<tr>
<td>Oman</td>
<td>14.7</td>
</tr>
<tr>
<td>Manhattan</td>
<td>17.9</td>
</tr>
<tr>
<td>Fatal</td>
<td>16.9</td>
</tr>
<tr>
<td>Cash</td>
<td>16.8</td>
</tr>
<tr>
<td>Boudewijn</td>
<td>18.5</td>
</tr>
<tr>
<td>Sebastián</td>
<td>26.2</td>
</tr>
<tr>
<td>Vickai</td>
<td>15.2</td>
</tr>
<tr>
<td>etc</td>
<td></td>
</tr>
</tbody>
</table>
Sequence key ancestors

Work out sequence of genotyped cows

ATTCTGGGGGCCTTACTCCC
ATTGTGGGGGCCATACGCC

ATTCTGGGGGCCTTACTCCC
ATTGTGGGGGCCATACGCC
Increasing the reliability of genomic selection

Using sequence:
 – Able to capture the differences in DNA that result in variation in a trait
 – Idea is to increase reliabilities to level of progeny-test

• Large reference populations
 – Needed for accurate EBVs
 – International collaboration
 – Across breed reference populations
 – Cows
Commercial livestock SNP chips

Bovine: 7,000, 50,000, 800,000
Ovine: 50,000
Porcine: 60,000
etc…”
Commercial livestock SNP chips

Bovine: 7,000, 50,000, 800,000
Ovine: 50,000
Porcine: 60,000
etc...

There will be new SNP chips or perhaps even other ways of capturing genetic information
In the future: All cows and bulls in key dairy nations likely to be genotyped (or sequenced)

What will this enable us to do:
1) Identify and select the best males and females
 • Increase the rate of genetic gain
2) Unambiguously identify sire and dam of a calf
3) Select the best heifers as replacements
4) Control inbreeding (manage matings)
Advantage of Genomic Selection in Dairy Cattle

Traditional progeny testing

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
<th>Year 5</th>
<th>Year 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bull calves are assessed, purchased and health checks undertaken</td>
<td>Semen distributed to PT farms</td>
<td>Daughters born on farm</td>
<td>Daughters mated</td>
<td>Daughters calve and commence milk production</td>
<td>First lactation performance data analysed by ADHIS and ABVs published for bulls</td>
</tr>
</tbody>
</table>

Using Genomic Selection

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
<th>Year 5</th>
<th>Year 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large numbers of bull calves screened for gene markers using tissue samples</td>
<td>ADHIS publishes ABVs based on pedigree and DNA.</td>
<td></td>
<td></td>
<td>Saves 4 years and delivers improved genetics sooner</td>
<td></td>
</tr>
</tbody>
</table>
• Thousands of bull calves screened worldwide
• Reliability around 60% at birth
• DNA can help you choose best bull for each country
• Increase in exchange of young bull genotypes?
A shorter generation interval may mean generations turn over more rapidly

A bull may be high impact for a year or two
“Iconic” bulls may become less common?
Reduction in the number of bulls progeny tested, as confidence in genomic selection grows

Hanoverhill Starbuck
The dawn of the age of computerised mating plans

Computerised tools to work out the matings to reduce inbreeding (at the genomic level) while still making genetic progress in the breeding objective

• Calculate relationships between males and females (i.e. potential inbreeding in progeny) at the DNA level
• Select the best mating for each heifer
Five ET full sisters

Proportion of genome shared

<table>
<thead>
<tr>
<th></th>
<th>FCE0543</th>
<th>FCE0544</th>
<th>FCE0547</th>
<th>FCE0577</th>
<th>FCE0594</th>
<th>Rank on ASI(g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCE0543</td>
<td>0.51</td>
<td>0.51</td>
<td>0.52</td>
<td>0.47</td>
<td>0.44</td>
<td>4</td>
</tr>
<tr>
<td>FCE0544</td>
<td>0.51</td>
<td>0.51</td>
<td>0.51</td>
<td>0.46</td>
<td>0.50</td>
<td>1</td>
</tr>
<tr>
<td>FCE0547</td>
<td>0.52</td>
<td>0.51</td>
<td>0.51</td>
<td>0.46</td>
<td>0.48</td>
<td>3</td>
</tr>
<tr>
<td>FCE0577</td>
<td>0.47</td>
<td>0.46</td>
<td>0.46</td>
<td>0.48</td>
<td>0.48</td>
<td>5</td>
</tr>
<tr>
<td>FCE0594</td>
<td>0.44</td>
<td>0.50</td>
<td>0.48</td>
<td>0.48</td>
<td>0.48</td>
<td>2</td>
</tr>
</tbody>
</table>
Each square represents the degree of relationship. Darker orange/red indicates closer relationships.
Impact of strategies on inbreeding and value/cow/year

<table>
<thead>
<tr>
<th>Method of controlling inbreeding</th>
<th>Genomic inbreeding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genomics</td>
<td>2.5% ($12.50)*</td>
</tr>
<tr>
<td>Pedigree</td>
<td>1.4% ($7)</td>
</tr>
</tbody>
</table>

$12.50 \times 4 = $50 per lifetime or €39
Will we still need to record data?

In the age of the genotype......

PHENOTYPE IS KING!

Dr Mike Coffey (SAC, Edinburgh)
Will we still need to record data?

Yes - to make sure that the associations between the genetic markers and current population remains relevant

Genetic evaluations are still a by-product of data recorded for other purposes e.g. management

Challenges of capturing data from inline recording?

What will happen to data collected by breeding companies e.g. type data in some countries?

Is there a role for “industry resource” herds?
New traits

• Potential to include new traits in the breeding objective
 ➢ Feed conversion efficiency/intake
 ➢ Methane emissions
 ➢ Better measures of fertility etc
Feed conversion efficiency

- 2,000 heifer calves (Australia and NZ)
- Measured (RFI) residual feed intake (predicted minus actual feed intake) in feeding trial
- Heritability of RFI was 0.25
- Genomic prediction accuracy 0.4
- International collaboration to improve the prediction
Summary

What does the future hold?

Higher reliabilities
 Use of more and more genetic markers (sequence)
 Gradual reduction in progeny testing
 Farm-recorded data still needed!

Rapid turnover of sire of cows and bulls
 Fewer breed “icons” i.e. more rapid turnover of bulls
 Greater use of mating software to avoid inbreeding

New traits
 Feed efficiency
 Better fertility measures etc
Acknowledgements

Dairy Future’s Co-operative Research Council
ADHIS
Gardiner Foundation