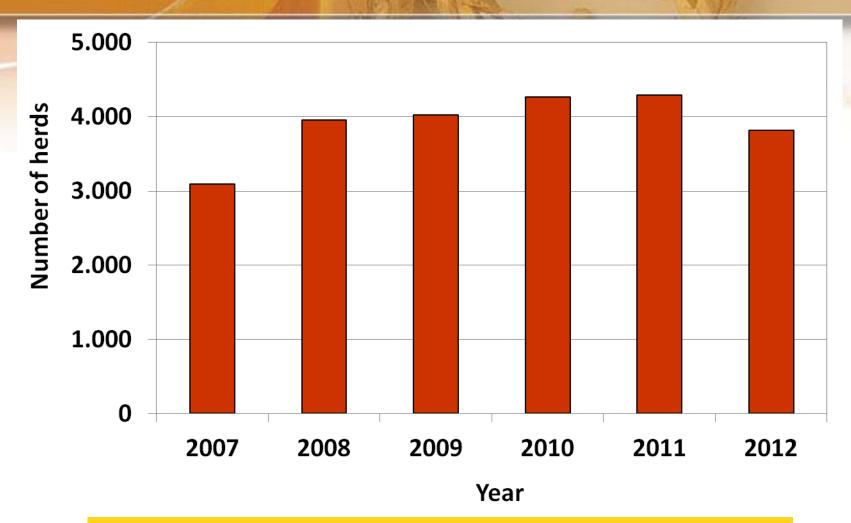


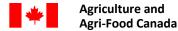
dataset with producer-recorded health events

F. Miglior^{1,2}, A. Koeck³, D. F. Kelton⁴ & F. S. Schenkel³ ¹ Agriculture and Agri-Food Canada, ² Canadian Dairy Network ³ CGIL, Dept of Animal Science, University of Guelph ⁴ Dept of Population Medicine, University of Guelph Guelph, Ontario, Canada


Canadian health recording system

- Health recording system since April 2007
- Recording done by producers on a voluntary basis
- Eight diseases are recorded: mastitis, displaced abomasum, ketosis, milk fever, retained placenta, metritis, cystic ovaries and lameness
- Overall goal is to develop a genetic evaluation for resistance to mastitis and to other diseases in Canadian dairy cattle

Number of herds recording health data


Participation: 40% of all milk recorded herds

Data quality


- To obtain reliable and accurate evaluations, recording of disease cases should be as complete as possible on all participating farms
- However, data quality can vary among farms and even for a given farm over time
- Under-reporting of diseases in general, and for specific disease is possible

Data validation

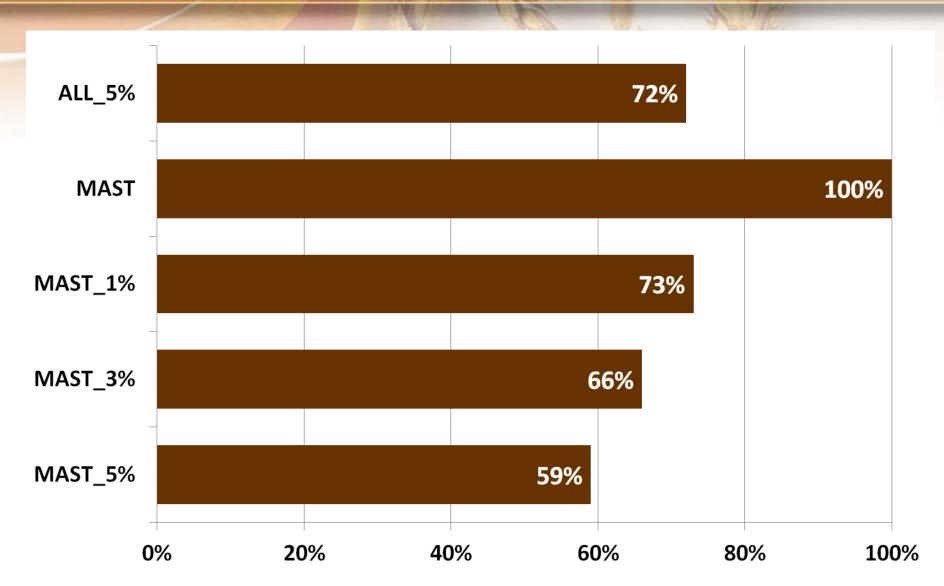
Country	Data validation									
Norway	Mandatory disease recording system – assumed that all herds report complete health data									
Sweden	Mandatory disease recording system – assumed that all herds report complete health data									
Finland	At least 1 veterinary diagnose per herd and year									
Denmark	 Number of treatments is greater than or equal to 0.3 per calving in the period from calving to 4 or 9 months after calving Last 4 months at least 7 calvings Last 9 months at least 10 calvings In the 9-month period, it is not allowed to be a 3 month period after birth, where there is no reported disease diagnosis in the herd 									
Austria	 Farms with a minimum average of 0.1 first diagnoses per cow and year Continuous submission of health data by veterinarians or performance recording technicians 									

Objective

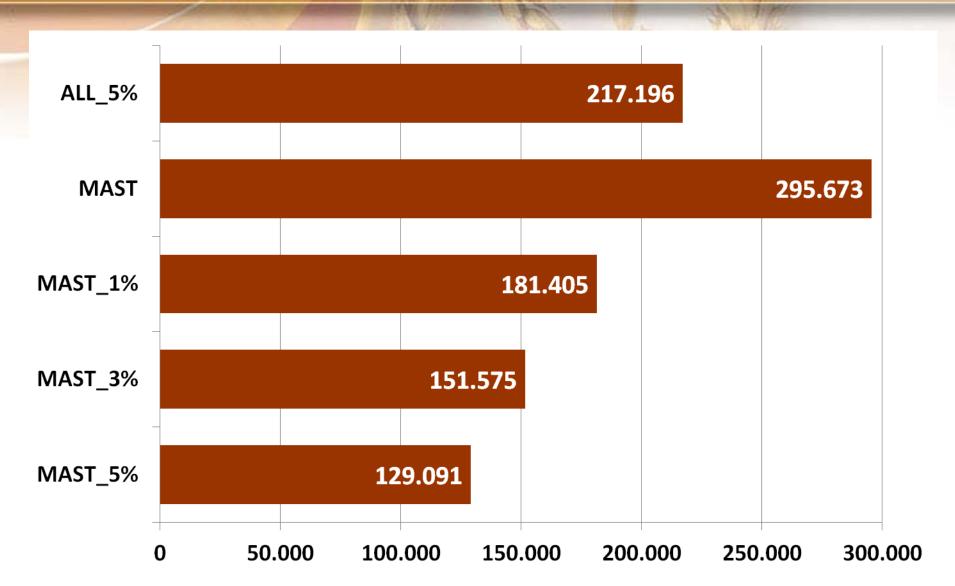
- Analysis of data quality in the Canadian health recording system
- Investigate the impact of 5 data validation methods on genetic evaluation for mastitis resistance

Data validation Herds with reliable recording

- At least 1 recorded mastitis case + minimum mastitis frequency of 5% per herd and year (MAST_5%)
- At least 1 recorded mastitis case + minimum mastitis frequency of 3% per herd and year (MAST_3%)
- At least 1 recorded mastitis case + minimum mastitis frequency of 1% per herd and year (MAST_1%)
- At least 1 recorded mastitis case (MAST)
- □ At least 1 recorded disease case (any disease) + minimum disease frequency of 5% per herd and year (ALL 5%)

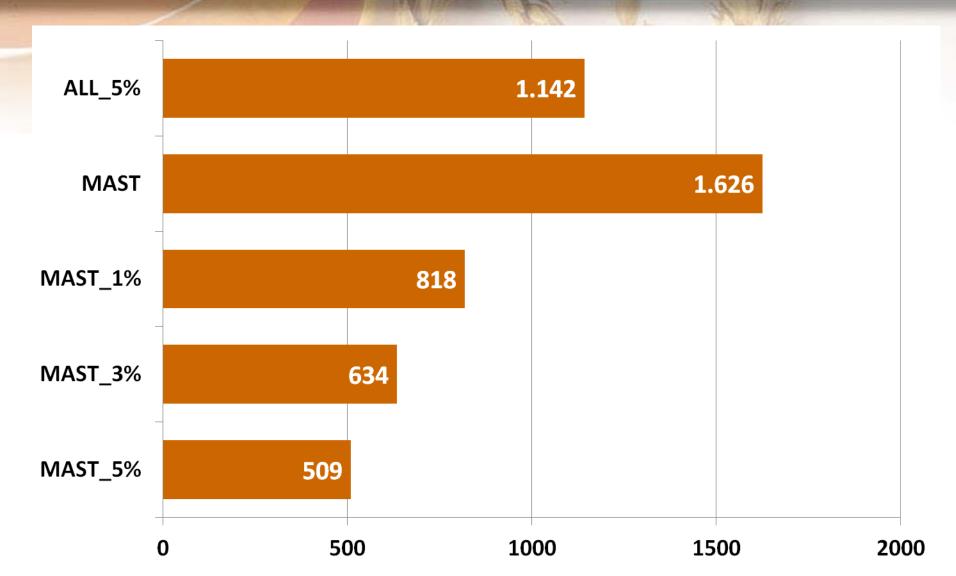

Genetic analysis - Traits and models

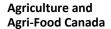
- First lactation Holstein cows
- Traits
 - Mastitis
 Binary trait, scored as 1 or 0, based on whether or not the cow had at least 1 mastitis case within 305 days after
 - calving
 - Lactation mean SCS
- Models
 - Univariate and bivariate linear sire models



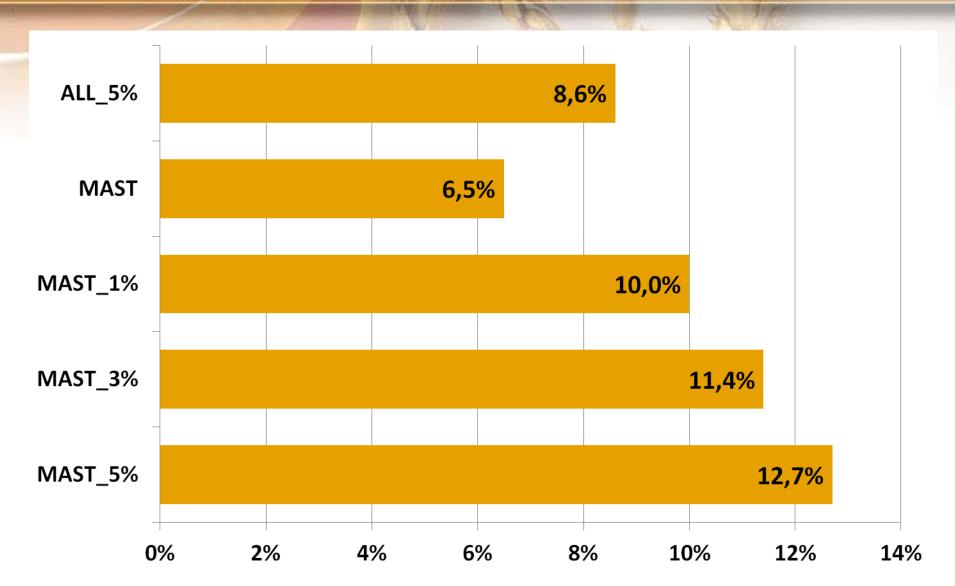
Percentage of usable herds by editing criteria

Number of records by editing criteria

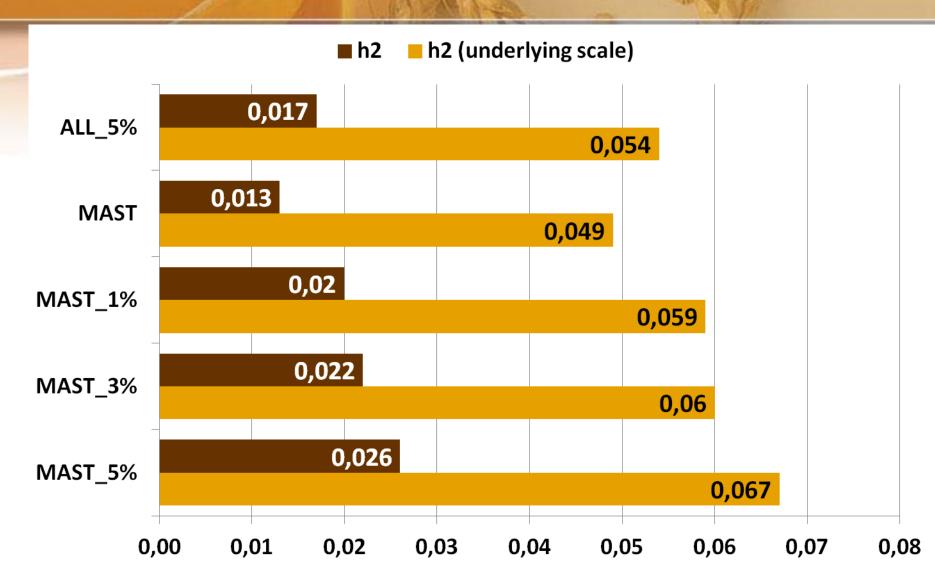

Number of sires with at least 1 daughter by editing criteria



Number of sires with at least 30 daughters by editing criteria



Agriculture et Agroalimentaire Canada



Frequency of mastitis by editing criteria

Heritability of mastitis by editing criteria

Heritability estimates transformed to the underlying scale using formula of Dempster and Lerner (1950).

SCS parameters and genetic correlations with mastitis by editing criteria

	Heritability, LSCS	Genetic correlation
MAST_5%	0.123	0.69
MAST_3%	0.125	0.66
MAST_1%	0.123	0.65
MAST	0.122	0.66
ALL_5%	0.124	0.68

Correlations between sire EBV for mastitis resistance

Sires with at least 30 daughters in all data sets (n = 509)

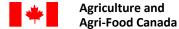
Data validation method	MAST_3%	MAST_1%	MAST	ALL_5%
MAST_5%	0.986	0.976	0.957	0.962
MAST_3%		0.990	0.972	0.973
MAST_1%			0.984	0.976
MAST				0.973

Number of top 100 bulls in common with data validation method MAST_5%

	MAST_5%
MAST_3%	91
MAST_1%	90
MAST	86
ALL_5%	85

Conclusions

- Data validation is an important part of analysis of producer-recorded health data
- Less stringent data validation led to a lower mastitis frequency, indicating a likely level of underreporting in the Canadian health recording system
- Genetic evaluations stay similar across the investigated data validation methods
- Future work is necessary to increase data quality in the Canadian health recording system



Multiple-trait animal model

- First parities vs. later parities
 - Mastitis: scored as 0 (no case) or 1 (at least one case) in the period from calving to 150 days after calving
 - Mean SCS in early lactation
 - Standard deviation of SCS in early lactation
 - At least one SCC TD record over 500k in early lactation
- First parity cows
 - Udder depth
 - Fore udder attachment
 - Body condition score

Model for mastitis and SCS traits

$$y = HP + YSP + ASP + hyp + a + pe + e$$

where the fixed effects are:

HP: herd – parity

YSP: year – season – parity

ASP: age – season – parity

and the random effects are:

Hyp: herd – year – parity

a: animal additive genetic

pe: permanent environmental

e: residuals

21

Model for type traits

$$y = HRC + AST + a + pe + e$$

where the fixed effects are:

HRC: herd – round – classifier

AST: age – season – time of classification

and the random effects are:

a: animal additive genetic

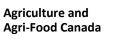
pe: permanent environmental

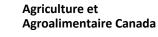
e: residuals

22

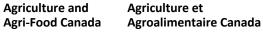
Heritabilities

Lactation	Trait	h ²
	Mastitis	0.028
Finet	SCS ₁₅₀	0.131
First	SCS _{SD}	0.024
	SCS ₅₀₀	0.041
	Mastitis	0.047
Later	SCS ₁₅₀	0.174
Latei	SCS _{SD}	0.026
	SCS ₅₀₀	0.094
Udder de	0.499	
Fore udder atta	0.333	
Body conditio	0.264	



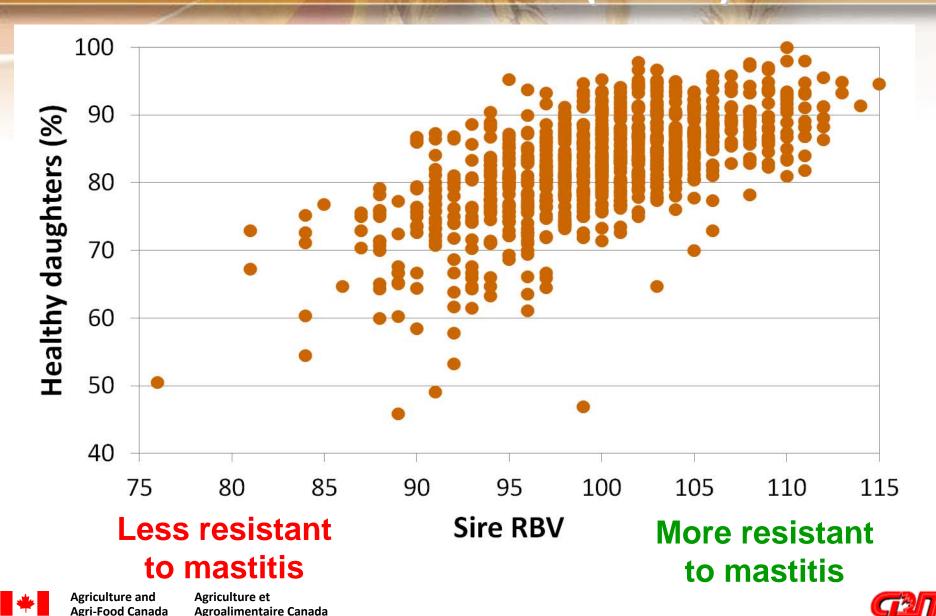

Genetic correlations

19		200			STAL PARK				11100	STATE OF THE PARTY	950		
l a atati	on/Troit		First			Later				LID FILA		DCC	
Lactatio	on/Trait	MAST	SCS ₁₅₀	SCS _{SD}	SCS ₅₀₀	M	AST	SCS ₁₅₀	SCS _{SD}	SCS ₅₀₀	UD	FUA	BCS
	MAST		0.55	0.51	0.72		20.00		•-				
First	SCS ₁₅₀			0.15	0.78			thin pa her co	_	ons in la	ter pa	arities	
50	SCS_{SD}				0.52								
	SCS ₅₀₀												
	MAST							0.74	0.69	0.78			
Latan	SCS ₁₅₀								0.64	0.91			
Later	SCS_{SD}									0.74			
	SCS ₅₀₀												
UD													
	FUA												

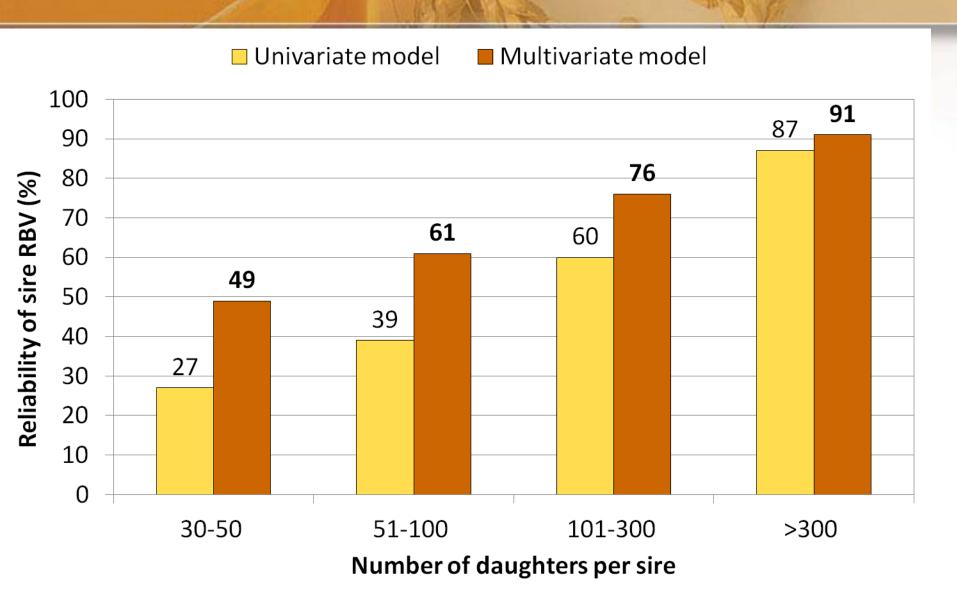

BCS

Genetic correlations

14		1960			THE PERSON	100		Trans.	76 19	1955-		
Lactatio	on/Trait		Fi	rst			La	UD	FUA	BCS		
Lactati	ony mait	MAST	SCS ₁₅₀	SCS_{SD}	SCS ₅₀₀	MAST	SCS ₁₅₀	SCS _{SD}	SCS ₅₀₀	OD	TUA	БСЗ
	MAST					0.59	0.54	0.50	0.59			
 .	SCS ₁₅₀					0.55	0.76	0.45	0.69			
First	SCS _{SD}					0.45	0.29	0.60	0.43			
	SCS ₅₀₀					0.65	0.74	0.63	0.76			
	MAST											
l atau	SCS ₁₅₀					An	nong pa	rity:				
Later	SCS_{SD}					Mo	oderate	correl	ations v	within	trait	
	SCS ₅₀₀											
	UD											
ı	FUA											
	BCS											


Genetic correlations

Lastatio	on/Tuoit		Fi	rst		La	UD	FUA	BCS				
Lactation/Trait		MAST	SCS ₁₅₀ SCS _{SD} SCS ₅₀₀ MAST SCS ₁₅₀ SCS _{SD}						SC	S ₅₀₀	UD	FUA	ВСЗ
	MAST										-0.52	-0.46	-0.34
First	SCS ₁₅₀			Between mastitis/SCS and type traits: Higher correlations with 1st parity									-0.29
	SCS_{SD}		(not so different for BCS)								-0.44	-0.23	-0.15
	SCS ₅₀₀										-0.50	-0.36	-0.32
	MAST										-0.27	-0.09	-0.23
Later	SCS ₁₅₀										-0.26	-0.08	-0.27
	SCS _{SD}									-0.30	-0.06	-0.12	
	SCS ₅₀₀									-0.28	-0.11	-0.31	



UD

% of healthy daughters according to the RBV for mastitis resistance (N=935)

Reliability of sire RBV for Mastitis Resistance

Next step

- Test run in August with genomic evaluations and sent to Interbull September test run
- Interim releases in the fall for bull owners
- Official release in December 2013, expressed as Relative Breeding Value

10 th World Congress on Genetics Applied to Livestock Production

Vancouver, BC, Canada August 17-22, 2014

wcgalp.com

In conjunction with American Society of Animal Science