Implementation of genomic selection in dairy cattle breeding schemes

Marie Lillehammer (Nofima)

Anna Sonesson (Nofima)

Theo Meuwissen (Norw.Univ.Life Sci.)

Introduction

• GEBV are available in many countries

- GBLUP or blended GBLUP-TBLUP
- BayesA/B/C

• Expectations high: accurate EBV of:

- Young genotyped animals
- Nonrecorded animals (trait nor pedigree)
 - Difficult /costly traits
- Animals living in a different environment
- Low heritability traits
- More sustainable breeding scheme

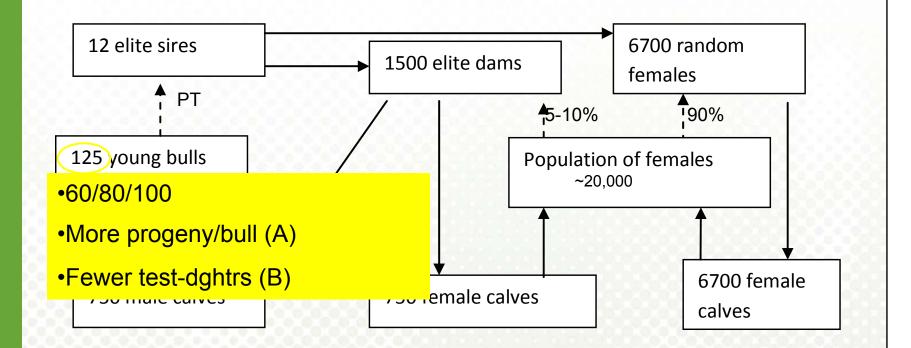
 Compare alternative designs for implementing GEBV in Norwegian Red breeding schemes

 Use stochastic simulation where accuracy of GWEBV is a result of the design

 Deterministic: accuracy is input/ independent of design (Schaeffer et al., 2007; Kønig et al., 2009)

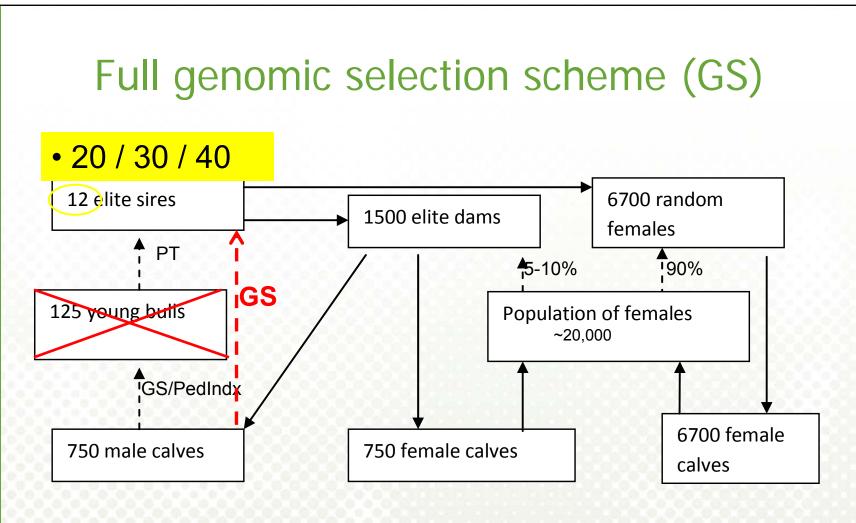
Methods: simulation of base population

- 2,000 generations
- Ne=200 (Fisher-Wright idealised pop.)
- 30 BTAs of 1 Morgan each (10⁶ bp)
- Mutation 10⁻⁸/bp (infinite sites mutation mod)
- Recombination 10⁻⁸/bp
- 3,000 random SNPs with MAF>.05 => QTL
 - OTL effects from reflected exponential distrib.
- 15,000 SNPs with highest MAF =>marker
 - Marker ≠ QTL


Simulation of breeding scheme

- Not possible to simulate entire Norwegian Red pop.
- Reduced size of simulated population
 - Number of selected males the same (in SD and SS)
 - Selected fractions identical (and selection intensities)
 - Selection steps for other traits: omitted
 - Non-GS larger scheme: similar G and F
- Test-daughters were not (individually) simulated
 - Reduces population size

$$DYD_{i} = \frac{1}{2}TBV_{i} + \sqrt{\frac{\frac{3}{4}V_{g} + V_{e}}{260}} * r_{i}$$



Preselection of young bulls (PS)

----> Selection (TBLUP, unless stated otherwise)

----> Selection (TBLUP, unless stated otherwise)

Traits & GEBV

$$TBV_{i} = \sum_{j=1}^{3000} x_{ij1}g_{j1} + x_{ij2}g_{j2}$$

•Y_i=TBV_i+e_i

•e_i~N(0,V_e)

•V_e is adjusted so that h^2 is .01, **.15** or .30

•Trait recording: at 2-yr-old females (gen.interv. = 3yr)

•Progeny test: 5-yr-old sires (gen.interv. = 6yr)

•GS: only applied to young-bulls;

 $y_i = G_i B L Y P_{j=1} (B L Y P_o f marker_E f e t ; no blending):$

Simulation parameters:

- 100 replicates
- Start population:
 - no genetic trend
 - Training set of 3000 progeny tested bulls
- Results for yr 13-19
 - Accuracy : yr 19

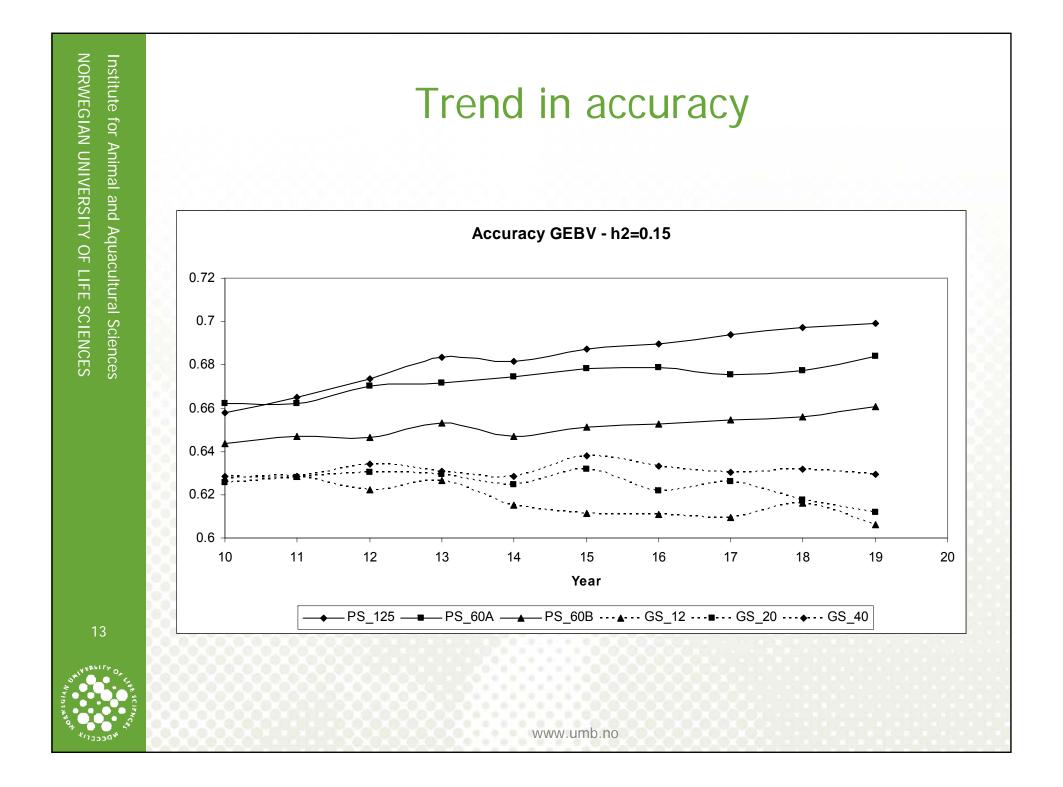
Results: preselection schemes

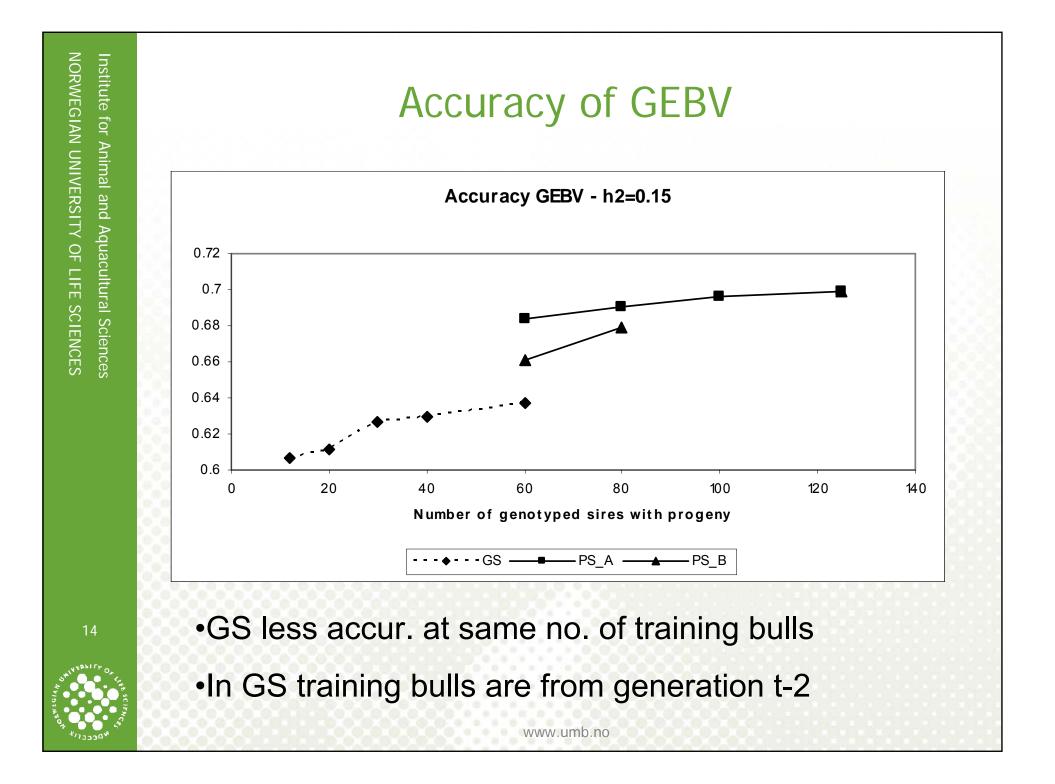
	ΔF	ΔG	Acc
Conv.	1	1	xx
PS_125	1.13	1.29	0.7
PS_60A	1.15	1.29	0.68
PS_60B	1.06	1.27	0.66

Full GS schemes

	Δ F	ΔG	Acc
Conv.	1	1	XX
GS_12	1.65	1.52	0.61
GS_30	0.8	1.42	0.63
GS_40	0.61	1.37	0.63

Institute for Animal and Aquacultural Sciences NORWEGIAN UNIVERSITY OF LIFE SCIENCES


h ²	0.01	0.05	0.3
Conv.	1	1	XX
PS_125	1.32	1.31	1.29
PS_60A	1.39	1.3	1.27
GS_12	1.87	1.59	1.5
GS_40	1.59	1.42	1.36


Effect of h² on G

12

GS versus PS

- GS highest G (+18%)
- GS highest F (+46%)
 - Short generation interval
 - Alleviated by selecting 30 elite sires:

F: -20% and G = +10%

- GS is cheapest (no progeny testing)BUT:
 - GS is furthest from conventional scheme (risk)
 - Has lowest accuracy (farmer acceptance)

Low heritability traits

- Schemes rank the same
- GS gives relative more extra G
- More sustainable breeding scheme
 - Functional traits more easily improved by GS
 - BUT: still need large scale recording

Including females

• For selection:

- Reduce generation interval in DS path
- Avoids preferential treatment problem
- For training:
 - Need huge numbers
 - h²=.15 => 6 times as many
- Work in progress (Noirin McHugh)
 - Irish Dairy cattle

17

Other traits : not large scale recorded

- Idea for difficult trait:
 - Perform experiment (~2000 records)
 - Estimate SNP effects
 - Select for SNP effects for ever after
 - Accuracy reduces markedly over time
 - (Muir, 2007; Habier etal, 2007; Sonesson et al., 2009)
 - Need continuous scheme for updating SNP effects
 - Not when using genome sequence (Meuwissen&Goddard,2010)

Conclusions:

• Full GS scheme is best

- Highest G and F
- Can be tuned to have low F
- Cheapest
- BUT: most risky
- Pre-selection scheme:
 - Close to current scheme
 - Can safe some costs by reducing progeny test
 - Beneficial for farmer
 - High accuracy

19

Conclusions (2)

Increased F

- shorted generation interval in GS scheme
- also in PS scheme
- Accuracy remained high when h² decreased
 - Unless h² became very low
 - Lower in GS than PS
 - One generation more between training and candidates
 - Kept on decreasing in scheme with few elite sires

Conclusions (3)

- More sustainable breeding schemes
 - Low h² traits easier to improve
 - However in practice r² of low h² trait disappointing (Luan et al., 2010)
 - Still need large scale recording
 - Re-train SNP effects

21