

Improved method for calculating daily yields from alternating testing schemes

A. Bünger, X. Bourrigan, H. Leclerc, Z. Liu, K. Kuwan & S. Mattalia

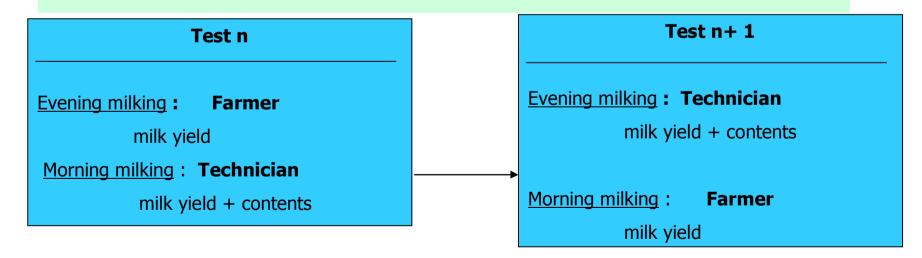

ICAR 37th Annual Meeting – Riga, Latvia (31 May – 4 June, 2010)

Introduction

- A joint project to improve the estimation of daily fat and protein yield from alternating testing schemes
- Project partners: VIT, Germany, Institut de l'Elevage and Milk Recording Organisations, France
- Alternating testing schemes increase to reduce costs on farm level
- But problems with estimation of daily Fat and Protein Yields.

Methods of recording performance : T methods

- Nb of milkings / day :
- Recording performance : T
- 2 milkings/day
- Milk yield recorded on 1 alternate milking
- Contents recorded on 1 alternate milking


Methods of Milk Recording : Z method (EMM) (ICAR, 2004, Sousse)

Z method (eg CZ)

- Recording operator :
- Nb of milkings / day :
- Recording performance : Z

- **C** Recording by Technician and Farmer
- 2 milkings/day
- Milk yield recorded on 2 milkings
- Contents recorded on 1 alternate milking

Aim of the project:

Increase accuracy of estimates for daily fat and protein yields from "Z" testing schemes:

Idea:

- Extension of the German model for estimating daily fat and protein yields (Liu et al., 2000) developed for T schemes
- Using Milk Yield obtained on the 2nd milking as an additional information

Current Model

- Current German model considers separate regressions for combinations of
 - parity classes (i)
 - milking interval classes (j)
 - lactation stage classes (k)

$$y_{A4}^{[ijk]} = b_0^{[ijk]} + b_1^{[ijk]} y_{AT-am}^{[ijk]}$$

Current Model

Definition of effect classes considered in the model

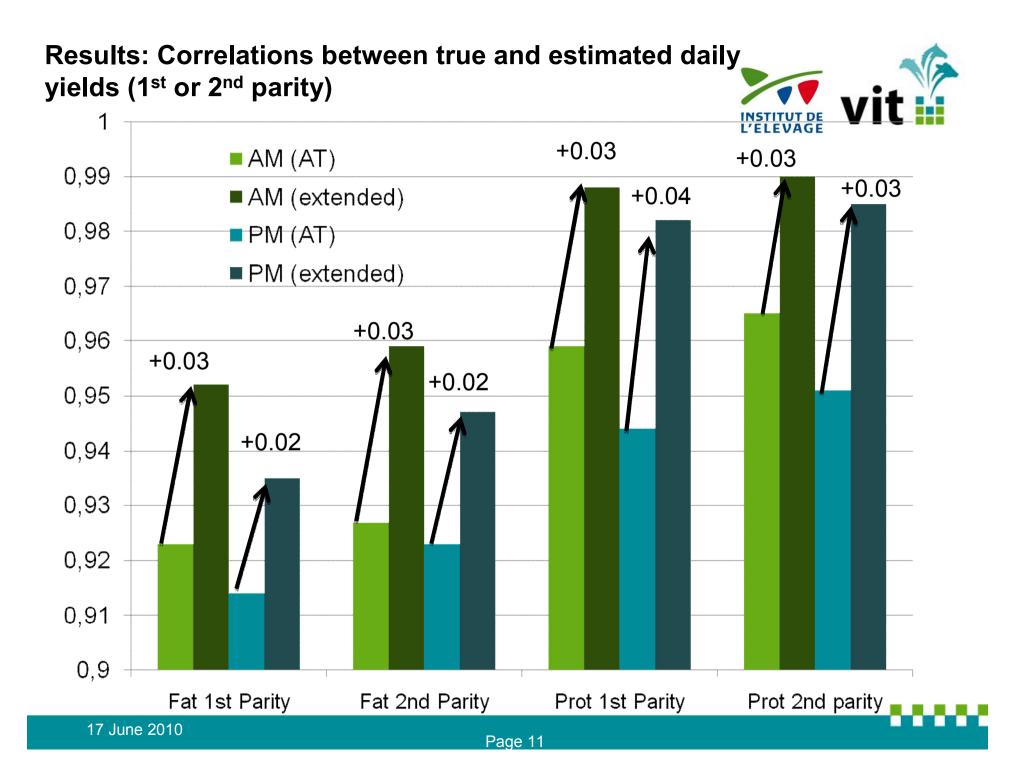
Trait	No. classes	Class definition
Parity	2	1 st lactation, 2 nd and later lactations
Milking interval	4	AM: < 13h; 13h-13.5h; 13.5 h-14h; ≥14h PM : ≥ 11h; 10.5h-11h; 10 h-10.5h; < 10h
Stage of lactation	12	30 days per class

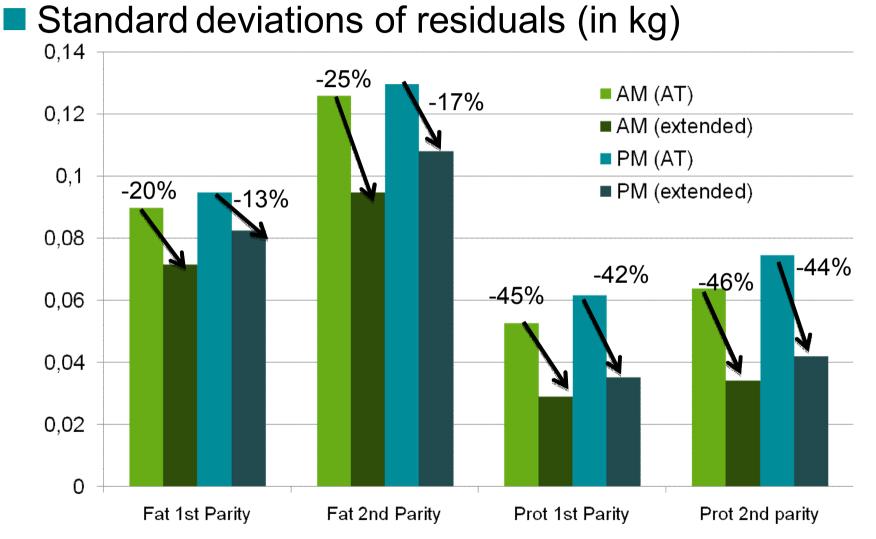
Extended Model for Z testing schemes (Lactocorders)

- Milk yield of the other milking is used as an additional covariate
 - **PM-milk yield** when AM-contents are available
 - $y_{A4}^{[ijk]} = b_0^{[ijk]} + b_1^{[ijk]} y_{AT-am}^{[ijk]} + b_2^{[ijk]} \operatorname{Milk}_{-pm}^{[ik]}$
 - AM-milk yield when PM-contents are available
 - $y_{A4}^{[ijk]} = b_0^{[ijk]} + b_1^{[ijk]} y_{AT-pm}^{[ijk]} + b_2^{[ijk]} \operatorname{Milk}_{\operatorname{am}}^{[ik]}$

Data

2 data sets were provided by 3 French milk recording organisations
 Milk and Contents obtained on both milkings separately ("True" and estimated Fat and Prot daily Yields)


- Data set (I) for deriving new regression coefficients / formulas:
- 24,491 milkings
- 8,655 cows
- 169 herds
- 2.8 milkings per cow
- Milkings from January 2008 November 2009
- Data set (II) for validation
- 22,407 milkings
- 8,190 cows
- 156 herds
- 2.7 milkings per cow
- Milkings from November 2008 March 2010


Data

Both data sets, n = 46,898 milkings

Trait	Mean	StdDev.	Minimum	Maximum
Daily milk-kg	28.3	8.15	2.3	67.0
AM milk-kg	15.7	4.62	1.1	48.6
PM milk-kg	12.6	3.89	1.2	45.8
Daily fat-kg	1.11	0.31	0.07	2.97
AM fat-kg	0.58	0.17	0.03	1.89
PM fat-kg	0.53	0.17	0.03	2.04
Daily protein-kg	0.90	0.23	0.11	1.99
AM protein-kg	0.49	0.13	0.04	1.54
PM protein-kg	0.40	0.11	0.03	1.42
Milk. Interval AM (h)	13.3	0.71	9.7	17.1
Milk. Interval PM (h)	10.7	0.71	6.9	14.4

Fat yield: Percentage of milkings with absolute differences expressed in percentage of true daily yield

		AM-milking		PM-milking	
	Difference	Current	New	Current	New
	< 1%	10.1	12.9	10.1	10.5
	1-5%	37.1	44.8	36.1	38.9
F-kg	5-10%	28.5	28.2	28.6	30.6
	10-20%	18.1	12.0	18.1	16.4
	> 20%	6.2	2.2	7.1	3.6

Protein yield: Percentage of milkings with absolute differences expressed in percentage of true daily yield

		AM-milking		PM-milking	
Trait	Difference	Current	New	Current	New
	< 1%	14.8	22.8	11.7	19.2
	1-5%	48.0	61.7	41.0	57.5
P-kg	5-10%	26.6	14.3	29.2	20.5
	10-20%	9.2	1.1	14.9	2.7
	> 20%	1.5	0.1	3.2	0.1

Mean differences btw. true and estimated daily fat yield depending on proportion of AM milk yield to PM milk yield

		AM		РМ	
		F-kg		F-kg	
Model	No.	Current	New	Current	New
0-	3	-0.77	-0.35	0.73	0.29
0.25-	29	-0.27	-0.09	0.36	0.12
0.50-	132	-0.19	-0.10	0.23	0.07
0.75-	1,830	-0.09	-0.05	0.08	0.02
1.00-	9,371	-0.02	-0.03	0.01	-0.01
1.25-	8,048	0.02	-0.01	-0.03	-0.03
1.50-	2,256	0.07	0.01	-0.08	-0.05
1.75-	536	0.14	0.03	-0.12	-0.08
2.00-	202	0.25	0.08	-0.22	-0.12

In general

- For all traits higher accuracy is achieved with morning milkings
- Lowest accuracy is found for fat yield
- With the new extended model
 - Accuracy increases for estimated daily fat and protein yield
 - Estimation errors are reduced, especially for very unbalanced milkings with large differences between morning and evening milk yields
 - Very often unbalanced milkings lead to unreliable estimates
 This source of errors can be reduced with the new model

Conclusion

- With the new model disadvantages of alternating testing schemes can be reduced
- For practical use the regression coefficients should be derived from a data set that includes milkings of at least a whole year to
 - reduce seasonal effects
 - reduce effects caused by short lactations
- The new extended model for estimating daily yields from alternating testing schemes could be a further step to increase the accuracy and therefore the acceptance of alternating testing schemes

Aknowledgement

Thanks to CAIAC, OPTIVAL and the MRO of Alsace for having provided the data used in this study!

