

Determination of carry-over in automated milking, recording and sampling systems using fluorescent tracers

Peter Løvendahl, Martin Bjerring and Torben Larsen

Thanks to:

- BIOSENS Project:
 - Lattec (Foss + DeLaval)
 - Danish Cattle
 - Ministry of Food, Fisheries and Agriculture
- RYK Livestock Registration and Milk Recording

Test herd owners

The Carry-Over problem

- If a milk sample from **this cow** contains milk from the **cow milked just before** ...
- Obvious source of error:
 - Cell count
 - Diagnostic indicators, PCR, mastitis, Johnes,,,,
- Special relevance to AMS
 - Complexity of AMS + sampler
 - "Hidden reservoirs"

Determination of carry-over

- Approval testing of samplers

 Milk fat percentage deviations (ICAR)
 - lndirect measure, imprecise, non-complex
- Regression analysis, mixed model statistics © Routine samples: Løvendahl & Bjerring, 2006
 - 😳 Direct measure
 - 😕 Large data requirements
- Tracer method
 - This study: simple, reliable, affordable !

Fluorescence based tracers

- Direct method -
- Based on dilution of colour intensity

Linear dilution & calibration curves

• Fluorescein (AY73) and 4MeU

Tested equipments

4 AMS and 1 conventional

Туре	Modifications
AMS	Standard
AMS	Standard unadjusted
AMS	Standard adjusted
AMS	Research modified
Manual Parlour	Standard electronic meter and sampler
	Type AMS AMS AMS AMS Manual Parlour

Protocol

- Phantom cows: Yellow and White
- 8 Kg "yellow" milk, samples before and after
- 8 Kg "white" milk, sample: how yellow is after?
- Replicate 6 x

Replicate	Run	Liquid	Volume (Kg)	Samples
1	1_1	Yellow	5	A B C
	1_2	White	5	A B C
2	2_1	Yellow	5	A B C
	2_2	White	5	A B C
	2_3	White	5	A B C
3	3_1	Yellow	8	A B C
	3_2	White	8	A B C
4	4_1	Yellow	8	A B C
	Wash	No		
	4_2	White	8	A B C

Some result details

			Pre-sam	ple, A	Sampl	ler, B	
Run	Туре	Volume	AY73	4MeU	AY73	4MeU	
Carry-over in percent							
1_1	Yellow	5	100.0	100.0	95.1	93.3	1
1_2	White	5	0.4	0.3	18.5	18.0	-
2_1	Yellow	5	100.0	100.0	90.2	93.0	
2_2	White	5	0.9	0.6	15.4	15.8	5
2_3	White	5	0.5	0.4	2.8	2.8	
3_1	Yellow	8	100.0	100.0	96.4	98.0	1
3_2	White	8	0.7	0.5	20.0	19.7	~
4_1	Yellow	8	100.0	100.0	95.4	97.4	
	WASH!						
4_2	White	8	1.0	0.7	1.7	1.4	
First order carry-over without wash 18.0 17.8							

Equipment results

Volume (N)	CO%, AY73	CO%, 4MeU	Average
5 (1)	8.4	8.5	8.5
8 (3)	3.3	2.8	3.1
8 (6)	6.7	7.2	7.0
5 (2)	17.0	16.9	17.0
8 (1)	20.0	19.7	19.9
6(1)	3.1	4.6	3.9
8 (6)	2.1	2.5	2.3
6 (2)	10.5	10.0	10.3
8 (3)	11.2	11.8	11.5
8 (6)	3.3	3.7	3.5
	Volume (N) 5 (1) 8 (3) 8 (6) 5 (2) 8 (1) 6 (1) 8 (6) 6 (2) 8 (3) 8 (6)	Volume (N)CO%, AY735 (1)8.48 (3)3.38 (6)6.75 (2)17.08 (1)20.06 (1)3.18 (6)2.16 (2)10.58 (3)11.28 (6)3.3	Volume (N)CO%, AY73CO%, 4MeU $5(1)$ 8.4 8.5 $8(3)$ 3.3 2.8 $8(6)$ 6.7 7.2 $5(2)$ 17.0 16.9 $8(1)$ 20.0 19.7 $6(1)$ 3.1 4.6 $8(6)$ 2.1 2.5 $6(2)$ 10.5 10.0 $8(3)$ 11.2 11.8 $8(6)$ 3.3 3.7

- Un-adjusted and modified: C-O up to 20%
- Well adjusted: 2 5%, similar to conventional
- Conventional: 3.5%

Reasons for carry-over

- Sampler
- Other parts of AMS / milking machine:
 - Mixing
 - Pump
 - Tubes
- Visible milk residues
- Hidden milk residues
- Adjustments and settings sub-optimal

Visible residues reduced with correct settings and adjustments

Method performance

- C-0 from modified AMS/samplers
 - agree with regression method Lavendahl & Bjerring 2006
- C-O-tracer,
 - DIY-phantom cows (2)
 - 3 h closing AMS, 6 replicates
 - 1.2 g tracer x 2
 - 200 L milk
 - 1 d lab-work fast result

Summing up:

- Reliable, fast and direct determination of C-O as percentage
- Useful for development and improvement
- Testing the complete system
- Suited for "bench-testing"

