AMS CARRY OVER TESTING PROTOCOL

SUGGESTION FOR ICAR

Peter Løvendahl, Martin Bjerring, Torben Larsen, Harrie van den Bijgaart and Christian Baumgartner

Joint effort

- ICAR task force group
- 3 institutions
 - Dept. of Molecular Biology and Genetics and Dept.
 of Animal Science, Aarhus University, Denmark
 - Qlip N.V., Zutphen, The Netherlands
 - Milchpruefring Bayern e.V., Wolnzach, Germany

What is carry over?

.. that a milk sample from cow B also contains some milk from cow A that was milked just before B

.. samples obtained from AMS are more prone to carry-over because of:

greater complexity of AMS ... valves, pumps, tubes, containers etc.

Visible carry-over

Imperfect emptying of recorder / end-unit

Testing methods

ALWAYS on complete system: Cow to sample

- Statistical
 - correlation / regression to previous sample content
- Bench-Herd test tracer dilution method
 - Phantom cow milkings
 - Live cow milkings

Two fluorescent tracers are mixed into milk

- Fluorescein
- 4MeU (4-Methyl Umbelliferon Sodium salt)
- 600 mg / 35 L
- Mixes well with water and fat
- (non-harmful when diluted in this way) BUT:

DISCLAIMER

We take absolutely no responsibility of any sort for violations of any national or local regulations on food safety or similar from using this testing protocol.

Linear calibration curves with low CV

Testing protocol - steps

- Collect bulk milk for testing 200 L
- Split in White and Tracer
- Throughly mix tracer colours into TRACER milk
- Weigh out portions of White and Tracer
- Keep milk warm / temperated
- Take samples before and following "milking" with phantom cows
- Read / Analyze samples using fluorometer

AVOID BRONOPOL – interference possible

Then we were almost ready ...

Testing protocol - tubes

- Each series contains 4 "milkings", 2 yellow + 2 white
- Extra sample points can be inserted e.g. recorder unit

Series	Content	Milk in	Bucket	Sampler
		Kg	Sample_ID	Sample_ID
1.1	Yellow	6	11.1	11.2
1.2	Yellow	6	12.1	12.2
1.3	White	6	13.1	13.2
1.4	White	6	14.1	14.2
2.1	Yellow	10	21.1	21.2
2.2	Yellow	10	22.1	22.2
2.3	White	10	23.1	23.2
2.4	White	10	24.1	24.2
3.1	Yellow	16	31.1	31.2
3.2	Yellow	16	32.1	32.2
3.3	White	16	33.1	33.2
3.4	White	16	34.1	34.2

Milking Phantom cows

Cheat codes and ID-tags needed!

Example – calculated C-O

Series	Cont.	Bucket			Samp.			Rat	ios
			Fluresc	4MeU		Fluresc.	4MeU	Fluresc.	4MeU
1.1	Yellow	11.1	610,6	597,4	11.2	542,5	539,8	542,5/610,6 = 0,89	539,8/597,4 = 0,90
1.2	Yellow	12.1	620,4	605,0	12.2	606,1	600,5	606,1/620,4 = 0,98	600,5/605,0 = 0,99
1.3	White	13.1	-3,9	-0,2	13.2	61,7	56,9	61,7/606,1 = 0,102	56,9/600,5 = 0,095
1.4	White	14.1	-0,4	0,6	14.2	0,5	4,6		

So, we calculate 100*(0.5*(0.102 + 0.095)) = 9.9% carry over

Examples from actual tests

Equipment	Date	Milk kg	N	C-O %
TruTest-Parlor	2010	8	6	3.4 %
AMS-L	2008	5, 8	6	14.5 %
_	2009	6, 8	7	2.5 %
	2013	6, 10, 16	3	1.8 %
VMS-DL	2008	5	1	8.5 %
		8	3	2.9 %
	2010	8	6	6.9 %
	2013	10, 16	2	4.3 %

Is carry over affected by yield?

CO – volume profiles – example findings

Splitting the C-O into device parts

By taking in **extra sampling points** – useful as diagnostic tool – where is C-O generated?

Live cow approach

Phantom cow method closes the AMS for 2-3 hours –

Alternative without closing?

>> Modified use of tracer - injection method

Live cow – versus bench test - results

Bad settings and adjustments cause C-O

Summing up – and where to go...

Suggested "bench / herd" test is ready for use

- Modifications are possible
- As a diagnostic tool using more sampling points

•Take home:

Carry over can be effectively reduced by adjusting settings

