New Technologies and their impact on Milk Recording

June 1, 2010 Kees de Koning

New Technologies and Milk Recording

- Developments in smart farming
- Use of technology on dairy farms
- Milk Recording and ICAR
- ICAR Guide Lines Update

Developments in the past decades (1950-2010)

Smart farming? Individual approach in large herd...

Information as a key element

From Measurement to Knowledge

Information on:

- Herd management
 - Milk recording, data services
- Farm and financial Management
- Support for governance, administration but also certification systems (quality assurance)

"We are drowning in data

but starving for information"

John Naisbett

From Data to Result

Smart dairy farming

Technological developments

Cow management

Smart farming, the answer?

- Technology to save labour and costs
- Technology to improve
 - Management
 - Milking including milk recording
 - Feeding
 - Social life
- Past many technologies, few were really successful, what can we learn from past?

New Technologies and Milk Recording

- Developments in smart farming
- Use of technology on dairy farms
- Milk Recording and ICAR
- ICAR Guide Lines Update

Current technology on dairy farms

- Utilization of electronic devices and systems
 - ID, feeding concentrate, yield sensors, pedometers, conductivity
- Automatic Milking Systems growing fast
- More integrated systems on farm
 - (ID, Yield, Data collection, sampling)
- Need for extra information
- In-line sensors and on-farm analysers entering market

Milk components

Progesteron, LDH, BHB

Focus area	Parameter analysed in milk	Early / on time detection
Reproduction	Progesterone	Heat Silent heat Pregnancy Abortion Cysts Anoestrus
Udder health	LDH – lactate dehydrogenase	Mastitis Subclinical mastitis
Feeding and energy balance	Urea BHB - beta hydroxybutyrate	Feed ration – protein Ketosis Subclinical ketosis Secondary metabolic disorders

Milk composition in-line

Drivers for sensor introduction

- Need for management by exception
- Strong focus on milk recording elements
- Development of Food Chain programs
 - ICT and communication
 - Product demands
- Introduction of highly automated milking systems
- External analysis or on farm analysis
- Time gain, quality of data versus costs
- Introduction of new statistical methods

What to expect in future?

- New sensors?
 - Food safety, composition, health and welfare status
- On farm processing of milk
 - Differentiation, use of colostrum, milk refinery,
 - Less transport volume: UF, RO and other techniques
- Measure locally, (data) analysis externally?
- Function within the Food Supply Chain?
- From grass to milk?
- New milk recording services
- Role of ICAR?

New Technologies and Milk Recording

- Developments in smart farming
- Use of technology on dairy farms
- Milk Recording and ICAR
- ICAR Guide Lines Update

ICAR Milk Recording

- Genetic improvement
- Benefits not only from genetic improvement, also
 - Feeding
 - Disease control
 - Daily herd management
- ICAR focus strongly on milk meter accuracy levels
 - Approval procedures, device requirements and routine test procedures
- More towards integrated systems
 - New devices, test procedures, continuous monitoring

Animal production future challenges

- Need:
 - Improvement of production and product quality
 - Lowering cost price
- Tools:
 - Early warning systems for management and quality programs
 - Internet applications
- Possibilities:
 - Measurements at animal level
 - Day to day management genetic data
- Key success factors
 - Robust and profitable systems, fitting in the management of the farmer

Modern dairy herds

- Cow ID, electronic milk meters, computer systems, Internet Access
- Need for information on SCC, urea, fat, protein, lactose, progesteron,
- Day to day management
- In-line and on-farm sensor developments
- External analysis samples in well organized laboratories
- Time gain, quality of data versus costs

MPR and utilization of milk recording (2008)

	CAN West	DK	FR	DE	NL
Farms	6418	4750	98000	103500	21173
% MPR	71.2	92.6	61.2	66.5	80.6
% EMM	11.3	17.9	1.8	6.5	24.7
% Cows in MPR	81.6	95.7	70.3	83.8	85.1

Alternative routine testing methods

- Use of smart statistical methods
- Use of milk meter data (milk meter, yield, cow number)
- Difference average per cluster number vs average all milkings on all clusters
- Deviation_{ms} $\approx \mu_{ms} x \text{ AvgKgMilk}_{Mm}$
- $\mu_{ms} = 0$ when meter operates ok
- Applied in several countries

New Technologies and Milk Recording

- Developments in smart farming
- Use of technology on dairy farms
- Milk Recording and ICAR
- ICAR Guide Lines Update

ICAR Guide Lines milk analysers

- Laboratory equipment
 - Milk analyzers
- On-farm (at-line) analyzers
 - Milk analyzer on farm using a representative sample
- In-line analyzers
 - Mounted in the milking system
 - Real-time or at the end of milking on a representative sample of the whole milking
- Chapter 11 adapted for in-line analyzers
 - Similar approach as for milk meters
 - Compulsory and non-compulsory elements
 - Limits of error are different
 - Test day approach

Milk Analyzer Limits (adapted from Olivier – 2008/2010)

Principle of establishing limits

- Accuracy must respond to the need of the milk producer for daily management to detect/measure significant production changes
- That means dealing with normal day to day variation
- Proposal limits for on farm devices (introduction equivalence factor FE)
 - Lab analyzers:
 FE = 1
 - On-farm analyzers: FE = 2
 - On-farm in-line FE = 2.5

Limits of error (Based on work by WP OMA (Olivier et al, 2010)

Table 11.2b. The accuracy limits for in-line milk analyzers in milk recording for fat and protein (compulsory elements for approval of milk analyzers)

Accuracy	range	standard deviation	bias
Fat	2.0-6.0 g/100g	0.25 g/100g	0.13 g/100g
	5.0-14.0 g/100g	0.25 g/100g	0.25 g/100g
Protein	2.5-4.5 g/100g	0.25 g/100g	0.13 g/100g
	4.0/0 g/100g	0.25 g/100g	0.25 g/100g

Table 11.2c. The accuracy limits for in-line milk analyzers in milk recording for lactose, urea and SCC (non-compulsory elements for approval of milk analyzers)

Accuracy	range	standard deviation	bias
Lactose	4.0-5.5 g/100g	0.25 g/100g	0.13 g/100g
Urea	10 - 7- mg/100g	15.0 mg/100 g	3.0 mg/100 g
SCC	0-2000	25 %	13 %

Take Home Message

- Milk Recording scenery is changing
- Smart Farming / use of sensor technology
- Introduction on-farm / in-line milk analyzers
- Will affect milk recording services
- Not only threat, also opportunities for new services

Thanks for your attention

