

Genetic evaluations based on data from automatic milking systems

Bjørg Heringstad^{1,2} and Heidrun K. Bugten¹

¹Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, ² Geno Breeding and A. I. Association

ICAR Conference, Berlin, May 2014

Norwegian dairy farming

- Larger herds with automatic milking systems (AMS)
- 1/3 of the dairy cows are in AMS herds
 ≈1200 milking robots
- Within a few years will AMS be the dominating dairy production system in Norway.

Automatic milking systems (AMS)

- Vast amounts of data are recorded daily
- Objective, frequent and accurate measures of many traits
- How can we best make use of these data?

Aim

- First genetic analysis of Norwegian AMS data
- Estimate heritability and predict breeding values for milkability in Norwegian Red.

AMS data

- 46 herds with DeLaval milking robots
- Minimum 2 years of data from each herd
- Information from >6000 cows and > 2 mill daily records
- Data for genetic analyses
 - -Records from 6 to 305 days after calving
 - –Lactation 1-7
 - -Norwegian Red A.I. sire

Milkability

MILKABILITY = Milk yield per total time spent in the milking robot; kg milk per minute "box time"

Box time = actual milking time

+ time used for preparation and attachment of teat cups
+ the time the cow uses before she decide to leave the robot

- A combined measure of milking speed / milk flow and how efficient the cow is when visiting the milking unit
- Directly associated with the capacity of the milking robot

Distribution of milk yield per minute spent in the milking robot

Overall mean: 1.5 kg milk per minute box time

95 % were within the interval 0.7 - 3.3.

Trait definition

- Daily milkability (one observation per cow per day)
- Mean milkability from day 30 to 60
- Lactation mean milkability from day 6 to 305

	Daily	Mean d 30-60	Lactation mean
No of observations	1,597,156	6,808	8,046
No of cows	4,835	4,264	4,787
Milkability, mean kg/min	1.47	1.48	1.44

Table 1. Summary statistics of milkability traits (kg milk per minute box time)

Factors affecting milkability

- Days in milk
- Lactation number
- Herd
- Year and season
- Milking frequency
- Milk yield
- Box time also affected by cow behavior

Milkability by days in milk for first- and later lactations

Model

- Repeatability models
 - -assumed to be the same trait across lactations
- Univariate linear animal models
 - -fixed effects of herd-year, month-year of calving, and age at calving by lactation number.
 - For daily milkability: effect of DIM

-random effects of animal and permanent environment

• Variance components estimated using DMU (Madsen & Jensen, 2007)

Heritability

Table 2. Estimated variance components, with their standard error (SE) and the corresponding heritability and repeatability of daily-, mean day 30-60 -, and lactation mean milkability.

	Milkability trait (kg milk per minute box time)			
Variance component	Daily	Mean day 30-60	Lactation mean	
Animal	0.033 (0.004)	0.037 (0.005)	0.033 (0.004)	
Permanent	0.073 (0.004)	0.050 (0.004)	0.046 (0.004)	
environment				
Residual	0.198 (0.0002)	0.038 (0.001)	0.035 (0.001)	
Heritability	<mark>0.11</mark>	<mark>0.30</mark>	<mark>0.29</mark>	
Repeatability	0.35	0.70	0.69	

Heritability

- Mean milkability day 30 to 60: 0.30
- Lactation mean milkability: 0.29
- Current genetic evaluation of milking speed for Norwegian Red
 - Trait: milking speed scored in 3 categories (slow, medium, fast)
 - -Heritability: 0.19
- More precise phenotypes gives higher heritability and more accurate breeding values.

Breeding values for milkability

EBV for milkability (day 30-60) for cows with data (left panel) and AI sires with daughters in the dataset

Rank correlations EBV milkability

	Daily	Lactation mean
Mean d 30-60	0.87	0.88
Lactation mean	0.98	

Milkability

MILKABILITY = Milk yield per total time spent in the milking robot; kg milk per minute "box time"

- Directly associated with the capacity of the milking robot
- Interesting trait for breeding more efficient cows for AMS
- Genetic improvement of milkability would be beneficial also in other production systems

-Milking speed and aspects of cow behavior

New traits

- The cow meet different challenges in the AMS herds
- The breeding program should be adjusted accordingly with respect to traits, trait definitions and weights in the total merit index
- Measures related to milking and cow traffic recorded in AMS that can be used to define new behavior and milking efficiency traits

Conclusion

- Data from AMS can be used for genetic evaluations
- Data routinely recorded in AMS provide information on new traits that can supplement or replace current traits in genetic evaluation

