Validation of the Nordic disease databases

Ulf Emanuelson

Department of Clinical Sciences, Swedish University of Agricultural Sciences

Background

- Disease recording in the Nordic countries:
 - Norway 1975; Finland 1982; Sweden 1984; Denmark 1992
 - Nationwide (almost)
 - Comprehensive database, with milk- and Al-recording, claw trimming information
 - Used for
 - Monitoring of endemic diseases
 - Advisory services
 - Genetic evaluation
 - Research

- Disease recording in the Nordic countries:
 - Similar
 - because veterinarians are (almost) always involved
 - Different
 - because technical solutions differ

Figure 1. Data flow for disease records from the herd to the central cattle database in the four Nordic countries (Wolff, 2012)

- Disease recording in the Nordic countries:
 - Similar
 - because veterinarians are (almost) always involved
 - Different
 - because technical solutions differ
 - because observations tells us so?

Figure 2. Incidence rate of clinical mastitis (Østerås, 2007)

- Disease recording in the Nordic countries:
 - Similar
 - because veterinarians are (almost) always involved
 - Different
 - because technical solutions differ
 - because observations tells us so?
 - Comparable?

- DAHREVA assess true disease situation in the Nordic countries:
 - Compare actual and recorded diseases
 - Characterize data loss (auditing) in recording systems
 - Behaviour and intentions of farmers and veterinarians
 - Anna-Maija Virtala (FI), Hans Houe (DK), Olav Østerås (NO) + project partners + 4 PhD-students/thesis:
 - Ann-Kristina Lind (DK) locomotion
 - Cecilia Wolff (SE) mastitis
 - Mari Espetvedt (NO) metabolic
 - Simo Rintakoski (FI) reproductive
 - ~40 publications

Objective, cont'd

Disease registration in the central database

Record entered into the central database, errors detected and corrected

Record submitted

Record written including the diagnosis

Veterinarian visits, examines and establishes a diagnosis

Farmer decides to contact a veterinarian

Farmer notices diseased cow

Clinically diseased cow

Healthy to subclinically diseased cow

Figure 3. Data flow from diseased cow to database (Wolff, 2012)

Study 1: Actual vs recorded diseases - M&M

- "Secondary data source"
- "Randomly selected" farms; n=105 to 179 per country
- Recorded clinical disease; 2 times 2-month periods in 2008
- Purpose-made recording sheets
- Definitions provided to farmers
- Veterinary attended or not
- Matched with data from national database

Study 1: Actual vs recorded diseases - Results

 Completeness (~sensitivity), i.e. the proportion of actual disease cases that were found in database:

Mastitis	DK	FI	NO	SE
Vet. treated	0.94	0.56	0.82	0.78
Farmer observed	0.90	0.51	0.75	0.76

Vet. treated	DK	FI	NO	SE
Oestrus	0.96	0.93	0.85	0.85
Milk fever	0.88	0.71	0.80	0.82
Locomotor	0.88	0.56	0.60	0.33

Poor recording

Poor recording

Solution – use only good reporters. Small effects, except for DK

- Poor recording
- Date differences
 - Increase from ±0 days to ± 4 / ±7 days increased completeness
 - Increase from ±7 days to ±30 days did not increase completeness further

- Poor recording
- Date differences
- Translation of disease codes
 - Huge differences in the amount of diagnose codes b/w countries
 - Differences in how specific the codes are
 - Subcategories of the disease coding

- Poor recording
- Date differences
- Translation of disease codes

Diagnose	Denmark	Finland	Norway	Sweden
Mastitis	7	3	2	14
Teat lesions	4	7 + 1	1	12
Subclinical mastitis	1	1	1	2
Dry period treatment	1	1 + 1	1	0
Udder other	1	4	4	15
Total	14	16 + 2	9	43

Study 1: Actual vs recorded diseases - Conclusions

- Underreporting for all diseases
- Significant differences between countries
- Some of the differences were due to study design

Study 2: Data loss – M&M Disease registration in the central database

Record entered into the central database, errors detected and corrected

Record submitted

Record written including the diagnosis

Veterinarian visits, examines and establishes a diagnosis Farmer decides to contact a veterinarian

Farmer notices diseased cow

Clinically diseased cow Healthy to subclinically diseased cow

Study 2: Data loss - M&M

- "Patient chart review", i.e. comparing on-farm records (receipts, herd ledger, cow-card, etc) with database
- Design varied by country
- Calculation of completeness and correctness

Study 2: Data loss - Results

Completeness:

DK	FI	NO	SE
0.79-0.85	0.83	0.88	0.74-1.00

- affected by homebred/purchased cow, diagnosis, type of veterinarian/system (SE), animal age group, region
- Correctness:

DK	FI	NO	SE
-	0.92	0.98	-

NB! Auxiliary data!

Study 2: Data loss - Problems

- Cow identities
- Date differences

Study 2: Data loss - Conclusions

- Information is lost in the process
- High degree of correctness

Study 3: Attitudes – M&M

Disease registration in the central database

Record entered into the central database, errors detected and corrected

Record submitted

Record written including the diagnosis

Veterinarian visits, examines and establishes a diagnosis
Farmer decides to contact a veterinarian

Farmer notices diseased cow

Clinically diseased cow
Healthy to subclinically diseased cow

Study 3: Attitudes – M&M

 Theory of planned behaviour (TPB) – only mild clinical mastitis due to practical limitations

Postal questionnaires to random sample

Study 3: Attitudes - Results

- Median behavioural intention score (range 0-1) to:
 - initiate contact with veterinarian (Farmer)
 - start medical treatment (Vet.)

	DK	FI	NO	SE
Farmer	0.50	0.63	0.50	0.38
Vet.	0.71	0.42	0.58	0.50

 Detailed information about what influences intention – differs b/w countries

Study 3: Attitudes - Conclusions

- Thresholds for action varies between Nordic countries
- Influences proportion of mastitis cases observed on farm that are captured in National databases
- Affects comparisons of official statistics of disease frequencies

Conclusions from DAHREVĀ

- Completeness lower than 100%, i.e. underreporting
 - Differences between diseases
 - Differences between countries
 - Adjustments possible
 - Further develop systems for recording (harmonization) and reporting! Currently on-going!
- Correctness almost 100%
- Differences in attitudes between countries is an important explanation!

Thank you for your attention ©