Validation of the Nordic disease databases

Ulf Emanuelson
Department of Clinical Sciences, Swedish University of Agricultural Sciences
Background

- Disease recording in the Nordic countries:
 - Nationwide (almost)
 - Comprehensive database, with milk- and AI-recording, claw trimming information
 - Used for
 - Monitoring of endemic diseases
 - Advisory services
 - Genetic evaluation
 - Research
Background, cont’d

- Disease recording in the Nordic countries:
 - Similar
 - because veterinarians are (almost) always involved
 - Different
 - because technical solutions differ
Background, cont’d

Denmark
- Database at Danish Cattle
- Computerised reporting by veterinarian, connected to billing system
- Paper form to local registration office
- Computerised reporting or reporting on paper form by the farmer
- Diagnosis on farm by veterinarian or farmer

Finland
- Database at ProAgria, Finnish Agricultural data processing centre Ltd.
- Computerised reporting by AI technician
- Diagnosis written on cow health card by veterinarian or farmer

Norway
- Cattle database at the Norwegian Dairy Association
- Electronic reporting by herd owner or herd advisor, usually monthly
- Reporting by the veterinarian over internet
- Diagnosis written on cow health card by veterinarian

Sweden
- Cattle database at the Swedish Dairy Association
- Swedish Board of Agriculture
- Private veterinarian reports electronically or sends copy of paper record
- State-employed veterinarian reports electronically via payment system
- Herd copy of veterinary record left on the farm
- Farmer reports directly to database

Figure 1. Data flow for disease records from the herd to the central cattle database in the four Nordic countries (Wolff, 2012)
Background, cont’d

- Disease recording in the Nordic countries:
 - Similar
 - because veterinarians are (almost) always involved
 - Different
 - because technical solutions differ
 - because observations tells us so?
Background, cont’d

Figure 2. Incidence rate of clinical mastitis (Østerås, 2007)
Background, cont’d

- Disease recording in the Nordic countries:
 - Similar
 - because veterinarians are (almost) always involved
 - Different
 - because technical solutions differ
 - because observations tells us so?
 - Comparable?
Objective

- DAHREVA – assess true disease situation in the Nordic countries:
 - Compare actual and recorded diseases
 - Characterize data loss (auditing) in recording systems
 - Behaviour and intentions of farmers and veterinarians
 - Anna-Maija Virtala (FI), Hans Houe (DK), Olav Østerås (NO) + project partners + 4 PhD-students/thesis:
 - Ann-Kristina Lind (DK) – locomotion
 - Cecilia Wolff (SE) – mastitis
 - Mari Espetvedt (NO) – metabolic
 - Simo Rintakoski (FI) – reproductive
 - ~40 publications
Objective, cont’d
Disease registration in the central database

Record entered into the central database, errors detected and corrected

Record submitted
Record written including the diagnosis

Veterinarian visits, examines and establishes a diagnosis
Farmer decides to contact a veterinarian

Farmer notices diseased cow
Clinically diseased cow
Healthy to subclinically diseased cow

Figure 3. Data flow from diseased cow to database (Wolff, 2012)
Study 1: Actual vs recorded diseases – M&M

- “Secondary data source”
- “Randomly selected” farms; n=105 to 179 per country
- Recorded clinical disease; 2 times 2-month periods in 2008
- Purpose-made recording sheets
- Definitions provided to farmers
- Veterinary attended or not
- Matched with data from national database
Study 1: Actual vs recorded diseases – Results

- Completeness (~sensitivity), i.e. the proportion of actual disease cases that were found in database:

<table>
<thead>
<tr>
<th>Disease</th>
<th>DK</th>
<th>FI</th>
<th>NO</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mastitis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vet. treated</td>
<td>0.94</td>
<td>0.56</td>
<td>0.82</td>
<td>0.78</td>
</tr>
<tr>
<td>Farmer observed</td>
<td>0.90</td>
<td>0.51</td>
<td>0.75</td>
<td>0.76</td>
</tr>
<tr>
<td>Oestrus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vet. treated</td>
<td>0.96</td>
<td>0.93</td>
<td>0.85</td>
<td>0.85</td>
</tr>
<tr>
<td>Milk fever</td>
<td>0.88</td>
<td>0.71</td>
<td>0.80</td>
<td>0.82</td>
</tr>
<tr>
<td>Locomotor</td>
<td>0.88</td>
<td>0.56</td>
<td>0.60</td>
<td>0.33</td>
</tr>
</tbody>
</table>
Study 1: Actual vs recorded diseases – Problems

- Poor recording
Study 1: Actual vs recorded diseases – Problems

- Poor recording

- Solution – use only good reporters. Small effects, except for DK
Study 1: Actual vs recorded diseases – Problems

- Poor recording
- Date differences
 - Increase from ±0 days to ±4 / ±7 days increased completeness
 - Increase from ±7 days to ±30 days did not increase completeness further
Study 1: Actual vs recorded diseases – Problems

- Poor recording
- Date differences
- Translation of disease codes
 - Huge differences in the amount of diagnose codes b/w countries
 - Differences in how specific the codes are
 - Subcategories of the disease coding
Study 1: Actual vs recorded diseases – Problems

- Poor recording
- Date differences
- Translation of disease codes

<table>
<thead>
<tr>
<th>Diagnose</th>
<th>Denmark</th>
<th>Finland</th>
<th>Norway</th>
<th>Sweden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mastitis</td>
<td>7</td>
<td>3</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>Teat lesions</td>
<td>4</td>
<td>7 + 1</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>Subclinical mastitis</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Dry period treatment</td>
<td>1</td>
<td>1 + 1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Udder other</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td>16 + 2</td>
<td>9</td>
<td>43</td>
</tr>
</tbody>
</table>
Study 1: Actual vs recorded diseases – Conclusions

- Underreporting for all diseases
- Significant differences between countries
- Some of the differences were due to study design
Study 2: Data loss – M&M

Disease registration in the central database

Record entered into the central database, errors detected and corrected

Record submitted
Record written including the diagnosis

Veterinarian visits,examines and establishes a diagnosis
Farmer decides to contact a veterinarian

Farmer notices diseased cow
Clinically diseased cow
Healthy to subclinically diseased cow
Study 2: Data loss – M&M

- “Patient chart review”, i.e. comparing on-farm records (receipts, herd ledger, cow-card, etc) with database
- Design varied by country
- Calculation of completeness and correctness
Study 2: Data loss – Results

- Completeness:

<table>
<thead>
<tr>
<th></th>
<th>DK</th>
<th>FI</th>
<th>NO</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.79-0.85</td>
<td>0.83</td>
<td>0.88</td>
<td>0.74-1.00</td>
</tr>
</tbody>
</table>

- affected by homebred/purchased cow, diagnosis, type of veterinarian/system (SE), animal age group, region

- Correctness:

<table>
<thead>
<tr>
<th></th>
<th>DK</th>
<th>FI</th>
<th>NO</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-</td>
<td>0.92</td>
<td>0.98</td>
<td>-</td>
</tr>
</tbody>
</table>

- NB! Auxiliary data!
Study 2: Data loss – Problems

- Cow identities
- Date differences
Study 2: Data loss – Conclusions

- Information is lost in the process
- High degree of correctness
Study 3: Attitudes – M&M

Disease registration in the central database

Record entered into the central database, errors detected and corrected

Record submitted
Record written including the diagnosis

Veterinarian visits, examines and establishes a diagnosis
Farmer decides to contact a veterinarian

Farmer notices diseased cow
Clinically diseased cow
Healthy to subclinically diseased cow
Study 3: Attitudes – M&M

- Theory of planned behaviour (TPB) – only mild clinical mastitis due to practical limitations

- Elicitation study

- Postal questionnaires to random sample
Study 3: Attitudes – Results

- Median behavioural intention score (range 0-1) to:
 - initiate contact with veterinarian (Farmer)
 - start medical treatment (Vet.)

<table>
<thead>
<tr>
<th></th>
<th>DK</th>
<th>FI</th>
<th>NO</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farmer</td>
<td>0.50</td>
<td>0.63</td>
<td>0.50</td>
<td>0.38</td>
</tr>
<tr>
<td>Vet.</td>
<td>0.71</td>
<td>0.42</td>
<td>0.58</td>
<td>0.50</td>
</tr>
</tbody>
</table>

- Detailed information about what influences intention – differs b/w countries
Study 3: Attitudes – Conclusions

- Thresholds for action varies between Nordic countries
- Influences proportion of mastitis cases observed on farm that are captured in National databases
- Affects comparisons of official statistics of disease frequencies
Conclusions from DAHREVA

- Completeness lower than 100%, i.e. underreporting
 - Differences between diseases
 - Differences between countries
 - Adjustments possible
 - Further develop systems for recording (harmonization) and reporting! Currently on-going!
- Correctness almost 100%
- Differences in attitudes between countries is an important explanation!

Thank you for your attention 😊