

### Verification of correct assignment of milk samples to cows in AMS-farms by DNA-microsatellites

### ICAR Conference 21. May 2014, Berlin

Jürgen Duda, LKV Bayern e.V., München & Ingolf Ruß, Tierzuchtforschung e.V., Grub



- 1. Correct parentage of cows under milk recording important for:
  - Herd book management
  - Breeding value estimation
  - Management of genetic defects, prevention of inbreeding
- 2. Correct assignment of milk samples to cows under milk recording is also important for:
  - Correct breeding value estimation
  - Prevention of manipulation
  - additional information about health status of the cow by infrared analysis



#### Distribution of farms in milk recording in Bavaria according to milking systems

#### Level at 30.09.2013

| farms with               | number |
|--------------------------|--------|
| bucket milking           | 1.019  |
| pipeline milking systems | 11.481 |
| milking parlour          | 11.404 |
| AMS                      | 1.079  |



Verification of correct sample acquistion and sample assignment for automatic milking systems (AMS) has to be possible with low effort.

Idea: Automatic selection of milk samples from the routinely monthly milk recording to check paternity with help of DNA-microsatellites



Motivated by two field tests, carried out 2002 in Bavaria

Objective at the time: Evaluation of an automatic procedure to gain a DNA-source for genotyping cows under milk recording

- Međugorač et al. (2004)
- Buitkamp (2004)



- Assignment of milk samples from selected cows under milk recording according to criteria of the breeding program
- Selection of milk samples in milk analysis laboratory to gain DNA
- DNA-material from milk samples as part of somatic cell count



- DNA-material sufficient for evaluation with DNA-microsatellites
- Not sufficient for SNP-genotyping (amount of high quality DNA-material too low)
- Interference by contamination

yet suited for

- Check of paternity
- Correct sample assignment
- Discovery of mixed samples



### 2013

#### Start of a pilot to establish a highly automated procedure for verification of sample quality on farms with AMS



- Selection of 60 farms with AMS or automated measurement of milk yield in milking parlour
- 2. Selection of 10 samples per farm via a program from DHIA-database for additional DNA analysis using microsatellites



- Sample correct (≡ father cannot be excluded)
- Sample in doubt (≡ father wrong)
  - $\Rightarrow$  2 possible errors
    - Swapped samples
    - Wrong paternity of cow
  - ⇒ Official paternity verification with DNA-analysis necessary
- Sample quality
  - Light contamination
  - Strong contamination



#### Process flow for automatical check of paternity and correct sample assignment





### Sample bottle



## Sample identifcation via barcode number



#### 1. RDV – Berichtigungs-Dienst

|                       | Berichtigungs-Dienst       | ZW-Prüfstelle         | HB-Berichtigung       | PM-Betrieb |
|-----------------------|----------------------------|-----------------------|-----------------------|------------|
|                       | Formate des Datums könner  | n auch ohne Punkte (I | DDMMYY) eingegeben we | rden!      |
|                       | Anmeldung DNA-H            | Ierdenkontrolle       | - Neumeldung          |            |
| * - Eingabe wird benö | tigt                       |                       |                       |            |
| * Betriebs-Nr         |                            |                       |                       |            |
| * Prüfungsjahr        |                            |                       |                       |            |
| * Probemelk-Nr        |                            |                       |                       |            |
| Fertigstellen Abso    | chicken) Eingabe leeren) Z | Zur Suche ) Abbre     | chen )                |            |

1/2



- 2. Farms
  - German Simmental, German Brown
  - Mostly artificial insemination
- 3. Selection of cows
  - Best 5 and worst 5 cows according to breeding value for total merit
  - Sires registered with DNA-profile
  - No cows from twin-births



- 8 farms registered too late for automatic selection
- 52 farms evaluated with 506 samples
- Implementation in august and september 2013
  Split according to milking system
  - o 40 farms with AMS
  - o 7 heringbone milking parlour
  - o 2 syde-by-syde milking parlour
  - o 3 tandem milking parlour



# Results of DNA-resource for paternity control from milk sample

| test-result      | number | %    | % of usable<br>samples | average cell count |
|------------------|--------|------|------------------------|--------------------|
| sire wrong       | 19     | 3.8  | 4.9                    | 160                |
| sire correct     | 371    | 73.3 | 95.1                   | 209                |
| sample unusable  | 116    | 22.9 |                        | 51                 |
| because of       |        |      |                        |                    |
| poor DNA quality | 91     |      |                        |                    |
| contamination    | 25     |      |                        |                    |



# Results differentiated for maternal parentage and farms

| result           | number | %  |
|------------------|--------|----|
| mother o.k.      | 30     | 91 |
| poor DNA quality | 3      | 9  |
| mother not o.k.  |        |    |

1 farm with high degree of wrong paternity (8 samples wrong)



### **Quality of milk samples**

| quality              | number | % of all<br>samples<br>in milking parlor | % of all<br>samples<br>in AMS |
|----------------------|--------|------------------------------------------|-------------------------------|
| poor DNA quality     | 91     | 23.0                                     | 16.3                          |
| strong contamination | 83     | 11.5                                     | 17.6                          |
| light contamination  | 37     | 4.9                                      | 8.0                           |

# Test of sensitivity of DNA genotyping for carry-over

#### Selected 3 cows with

| COW | somatic cell count |     |            |
|-----|--------------------|-----|------------|
| 1   | low                | (   | <100.000)  |
| 2   | medium             |     |            |
| 3   | high               | ( > | 1.000.000) |

1 sample from each cow and for 9 mixtures in ratios at 1:9, 2:8, 3:7, 4:6, 5:5, 6:4, 7:3, 8:2 and 9:1 for each combination



# Visualization of the degree of contamination of milk samples

1/2





# Visualization of the degree of contamination of milk samples

2/2





- Markers with alleles showing strong signals in screening respond even at low mixing ratios (<10%)</li>
- High somatic cell counts cause responses even at low milking ratios
- Samples with low somatic cell counts (<100.000) contaminations are only detectable at higher mixing ratios (>30%)



- Analysis of milk recording samples via microsatellite DNA-genotyping is a cost efficient method because of high automation. No additional effort for sample organization is necessary.
- It is an efficient check for sample quality in milk recording and for parental verification in herdbook management.
- It permits detection of contamination by carry over or deliberate manipulation.



- In summer this year 60 other farms will be analyzed via microsatellite DNA-genotyping
- For each farm 20 samples will be automatically selected. The Laboratory of GeneControl gets additional information of cell count in order to exclude samples with low cell count.
- Farms with sampling test via LactoCorder are included in order to get a comparison to farms with own sampling systems for carry over.

## Thank you very much