

Detection of ketosis in dairy cattle by determining infrared milk ketone bodies in milk by Jean-Bernard Davière France Conseil Elevage jb.daviere@clasel.fr

M AT IN LARGER A M

Deviation of carbohydrate and lipid metabolism associated with significant energy deficit between supply and need: Intense mobilization of body fat Incomplete utilization of long chain fatty acids Accumulation of ketones in the blood, urine and milk Syndrome observed in early lactation (1st, 2nd or • 3rd month of lactation) Gradual symptoms: animal healthy, subclinical ketosis, clinical ketosis

M AT IN LARGE IN IT

Downer du sens à la Three types of ketosis are described according to the origin of the causes favoring the development of this disease:

Type I: insufficient energy intake. Not suitable feeding techniques may limit the energie concentration, inappetence due to several causes (lameness, mastitis, milk fever) resulting in an inability swallowed up.

Type II: fat cow syndrome. Mismanagement of food during the dry period.

Type III: **ketogenic ration**. Butyric acid is a precursor of ketone bodies. This acid is found in high concentrations in silage of poor quality.

Ketosis: Implications

- Clinical symptoms
 - Loss of appetite
 - Preferred forage to concentrates
 - acetone odor in the mouth, urine
- Drop in production
- Changing milk composition (increased fat / protein ratio)
 - Disturbance of reproduction
 - Increases the frequency of intercurrent diseases (mastitis, displaced abomasum, metritis ...)

AT IN LARGE I

- Metabolic disease underdiagnosed in breeding
- Clinical ketosis: 3-4% of cows
- Subclinical ketosis between 7 and 14% of animals (Achard T. 2005, PhD ENVN)
- Current indicator: Ratio Fat / Proteine> 1.5
 - Sensitivity: 58%
 - Specificity: 69% (Duffield et al. 2000)

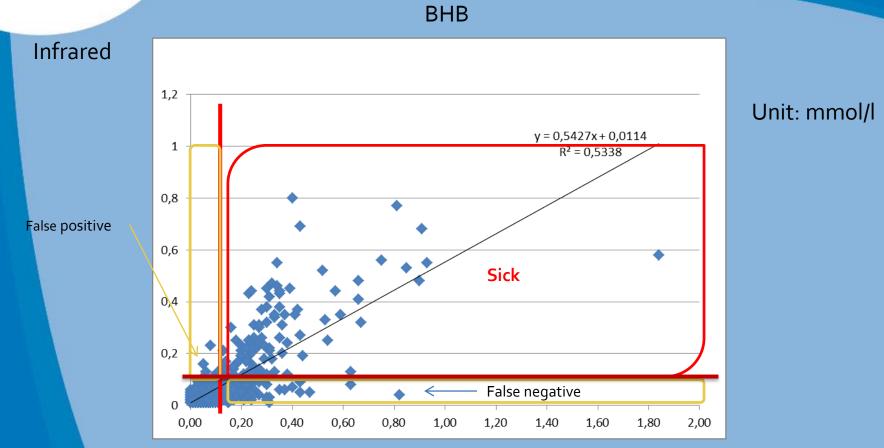
Ratio Fat/proteine is not enough specific ↔ need an accurate indicator

MA ANNA IT AT IN ANALAS IN 112

New Indicateur based on wich molecules? Bibliography

H at is satisfy in 111

- Which ketone body? Acetone - Beta-hydroxybutyrate - Aceto-acetate (unstable)
- Concentration in the blood is a good indicator of ketosis
- Correlation ketones blood / milk is medium (Enjalbert 2011: 0.66 for the BHB)
- Correlation Infrared Milk ketones Chemical reference average milk: 0.79 (Ross 2007)
- Subclinical ketosis level in milk (chemistry reference method): BHB 0.1 mmol / l Acetone 0.15 mmol / l


- Providing of 2.1 Foss calibration
- Ability to fill in the milk two ketone bodies used like ketosis markers:
 - The Beta-Hydroxybutyrate (BHB) and Acetone (Ac)

M AT IN LARGE IN IT

 492 reference samples (92 in January to 400 in June 2011)

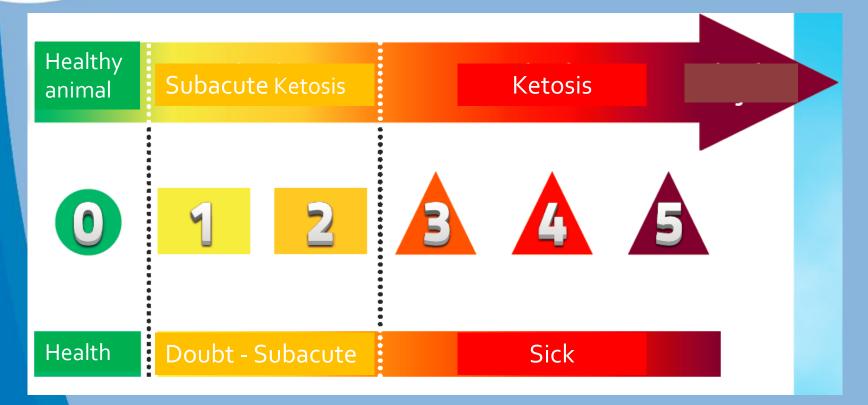
Relations Reference/Infrared methods

Reference method

te thi

		Reference		
		Sick	Health	
Diagnoses	sick	98	9	Positive predictive value : 92%*
	Health	10	67	Négative predictive value : 87%*
	Total	108	76	*For information on these
		Sensibility : 91%	Specificity : 88%	frequence sick/health

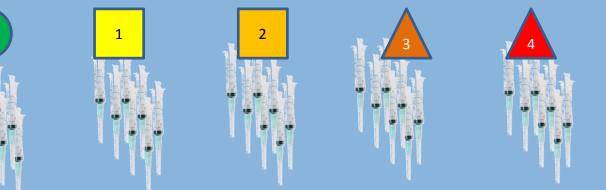
More than 9 on 10 sick cows are detected by the model (sensitivity) When the model says that a cow is sick, it is true more than 9 times out of 10 (VPP)


Mi data M de dadta h Mi

The evaluation grid

-> 1111

KETODECTECT®



Mi white M at it when it it

What about blood

Validation data: 10 blood samples in each class:

0

Blood profile on: BHB glucose Hepatic enzymes (Asat - Gamma GT) urea triglycerides albumin

NA LANDA IT AT IN LANDA IT IT

The proofs in the blood

BHB content according to the predicted status of cows 4 3.5 3 BHB in blood (mmol/L) 2.5 subclinical threshold 2 clinical threshold 1.5 Average value of BHB 1 0.5 0 0 1 2 3 4 5 Ketosis notes

Linear evolution of blood BHB concentration according to the ketosis note Note 3: sub-clinical or clinical?

The proofs in the blood

Blood glucose content according to the predicted status of cows 0,54 Average glucose in blood (g/L) With increasing Ketosis note: 0,52 - Decrease proportional blood glucose 0,50 - Increased liver enzymes indicative of 0,48 suffering 0,46 0,44 0,42 0,40 0 1 2 3 4 5 **Ketosis notes** Liver enzyme activity according to the predicted status of cows 160,00 140,00 Liver enzyme activity (U/L) Non-significant relationship 120,00 AST between this sample and note AST threshold 100,00 gGT **CETODE**TECT Urea - Triglycerides -80,00 gGT threshold Albumin Lineare (AST) 60,00

40,00

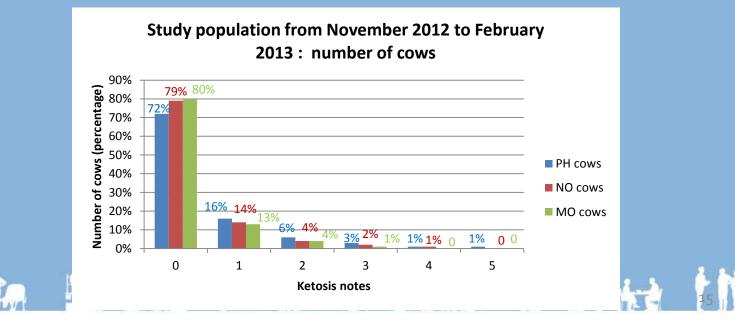
20,00

0

1

2

Ketosis notes

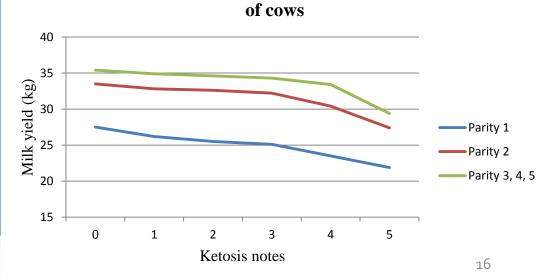

3

5

The frequency of clinical and subclinical ketosis (note KETODETECT® from 1 to 5) changes according to seasons and diets : 15% summer 2012; 12% sept/oct. 2012; 25% winter 12/13; 14% winter 13/14

Study population from November 2012 to February 2013 – 162,742 data – 3 breeds: PH (Prim'Holstein) (115,960 data), NO (Normande) (39,532 data), MO (Montbeliarde) (7,250 data)

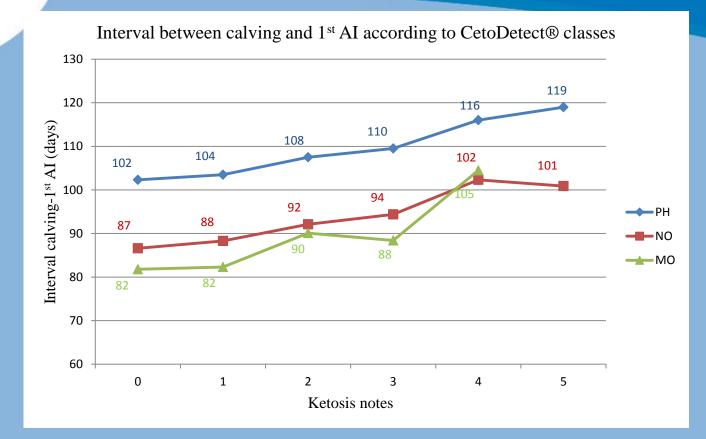
	CetoDetect®					
	0	1	2	3	4	5
Number of data	122 030	25 867	9 309	3 076	1 885	1 340
Percentage	74.63	15.82	5.69	1.88	1.15	0.82


Clasel data

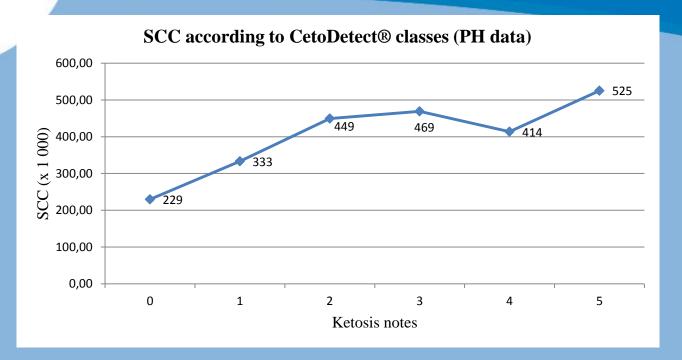
What about milk production ?

Milk production based on ratings KETODETECT® and lactation rank Analyse on 115960 P'H

sure	, 33					
	CetoDetect®					
Average milk yield (kg)	0	1	2	3	4	5
1st lactation	27.5	26.2	25.5	25.1	23.5	21.9
dairy accumulated losses		-1.3	-2	-2.4	-4	-5.6
2nd lactation	33.5	32.8	32.6	32.2	30.4	27.4
dairy accumulated losses		-0.7	-0.9	-1.4	-3.1	-6.1
3rd lactation	35.4	34.9	34.6	34.3	33.4	29.4
dairy accumulated losses		-0.6	-0.8	-1.1	-2.1	-6.1


A significant decrease in milk production in case of problems, up to 6 kg of milk on average.

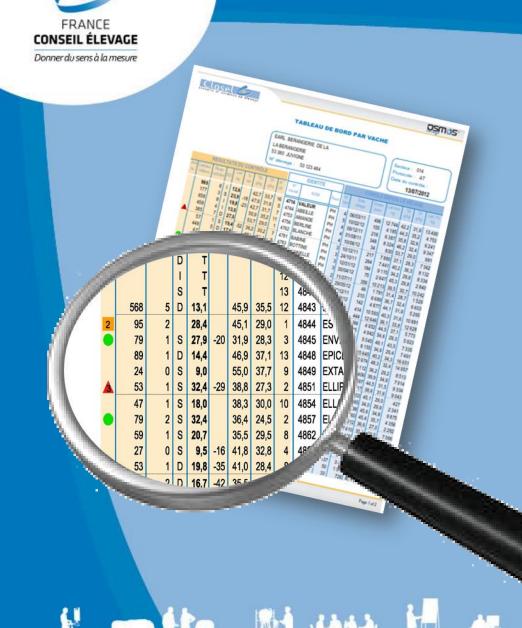
Average milk yield according to the predicted status


Strong impact of ketosis on the time-breeding dairy cows (until ovarian cycle whether 22 days)

Bibliographic source (JDS) :Success rate in the first IA divided by 2!Metritis number multiplied by 3.

Journal of Dairy Science june 07. Walsh – Duffield - Leblanc

What about cells ?



Turning abomasum : increased by 4 to 8 times frequency!

Lameness

Reforms: higher probability 1.4 and 2 times more to be reformed during or at the end of lactation

annual engagement

Price: 3 € / cow / year

A LANAL

Ketosis impact on profitability

Simulation for a herd of 50 cows

Economic losses

milk losses	
300 liter x 330€/1000L milk x 50 cows x15%	750 €
increase of pathologies	
2 mastitis x 150€	300 €
3 metritis x 50€	150 €
lameness/displaced abomasum/other	300 €
	1 500 €

New indicateur: $3 \in /VL * 50 VL$ $= 150 \in$ Simulation for a herd of 50 VL the best knowledge of the status of the

Rei while the an in which is the


animal adjusts 2/3 of the problems: 1500 € * 0,66 = 1000 €

Gain of 1,000 € is a return on investment of 6 to 8!

CetoDetect[®] Membership

Membership 17 MRO 30 countries 62 % herds 65 % cows

Stratégic interest

New indicator:

Adds value on Milk Recording samples Reinforces the dimension advice: the link between Performance, Nutrition and Health Service → high perceived value Consolidates MRO in a competitive environment Strengthens the commercial range if it exists Helps to maintain the innovative view of MRO

M AT IN LAAMAA IT

Detection of ketosis in dairy cows

