

of increased dairy farm profitability

Filippo Miglior^{1,2}, Jacques Chesnais³ & Brian Van Doormaal² ¹Agriculture and Agri-Food Canada ²Canadian Dairy Network ³Semex Alliance Canada

Introduction

- Genetic improvement has been a major force, if not the major one, for making advances in dairy cattle profitability during the last few decades
- Improvement has first been for production and conformation traits
 - except in some Scandinavian countries where an early focus was also placed on fertility and disease resistance
- In the last decade, however, selection objectives in many countries have been adjusted to give more emphasis to health, fertility and longevity
- □ This was made possible by an increased effort in the collection of data for the corresponding traits in on-farm recording programs

Objectives

- □ To review selection objectives in use in Holsteins among Interbull member countries
- To report and compare genetic trends achieved for key economic traits over the last 10 years
- Finally, Canada was used as a case study:
 - to examine the impact of genetic improvement at the level of the cow population
 - to measure its economic significance for the dairy industry

Selection indices worldwide

Selection indices worldwide - discussion

- Large range among countries for relative emphasis on protein kg and overall production
 - Protein kg: 14% (The Netherlands) to 52% (Japan)
 - Production: 26% (The Netherlands) to 72% (Japan)
- Average index has following relative emphasis:
 - 48% production (31% protein, 12% fat & 5% milk)
 - 17% type
 - 11% longevity
 - 8% udder health
 - 11% fertility
 - 5% other disease or management traits

Reduced emphasis on production over time Relative emphasis in national selection indices

International comparison of dairy bulls

- MACE EBVs from Interbull April 2012 run were used
- Five major traits were considered
 - Protein kg (indicator of production)
 - Overall Udder (indicator of conformation)
 - Longevity
 - SCS (indicator of udder health)
 - Calving to First Service (indicator of fertility)
- MACE EBVs on the Canadian scale were standardized to SD units
- Only bulls born from 1997 to 2006 were kept
- No effect of genomic selection yet

International comparison of dairy bulls

- □ The country of origin of each bull assumed to be the country where the bull had the largest number of daughters
- Major dairy countries were defined as those with at least 200 bulls tested per year
 - Ireland, which tests 25-65 bulls per year, was added
- Genetic trends for bulls born in 1997-06 were plotted for the five traits
- The average EBV of bulls born in 2005-06 was plotted for each trait and country

Average EBV by year of birth and country Protein kg

Average EBV by year of birth and country Overall Udder

Average EBV by year of birth and country Longevity

Average EBV by year of birth and country Somatic Cell Score

Average EBV by year of birth and country Calving to First Service

Average EBV of bulls born in 2005-'06 Each trait was given an equal weight

Average EBV of bulls born in 2005-'06 for average index* (P 49%, U 18%, L 12%, S 9%, F 12%)

*Average of 18 national selection indices

Yearly genetic progress by country and trait (last 5 years: bulls born in 2002-'06)

Average genetic progress by trait across countries Last 5 years vs. previous 5 years (\pm 1 SD)

^{*}reversed scale for SCS

Average genetic progress by trait across countries Last 5 years vs. previous 5 years (\pm 1 SD)

^{*}reversed scale for SCS

A case study: Canada

- Changes in LPI over time
- Cow EBV from April 2012 CDN evaluations
 - Fat and protein kg, mammary system, SCS, Direct Herd
 Life, Calving to First Service and First Service Conception
 - Genetic trends for cows born in 1981-2011
 - Cow genetic progress from last 5 complete years of birth (2007-11) and 5 previous years (2002-06)
- Economic impact of genetic improvement

Canadian LPI history

Traditional selected traits Cow genetic trends

Traits under more recent selection Cow genetic trends

Fertility traits under recent selection Cow genetic trends (higher value is desirable)

Average cow genetic progress by trait Last 5 years vs. previous 5 years

Genetic and phenotypic trends for Canadian Holstein cows from 1980 to 2009

Ratio of genetic and phenotypic progress

Effect of genetic improvement on farm profitability - Assumptions

- Value of 100 points of LPI: \$29 per cow per year (van Beek et al, 2009)
- Canadian milking cow population: 1M
- Discounting rate applied to benefits: 5%
- Increase in progress from genomics: 60%

Net annual economic value of genetic change for the Canadian dairy cow population

Rate of change and value of selection	Current rate (last 5 years)	Expected rate after genomics
Annual genetic change (points of LPI per year)	142	227
Annual value of this change for the Canadian dairy herd	209 M\$	334 M\$

Conclusions

- Increased emphasis on functional traits in most countries has resulted in more genetic progress for these traits
- These advances were achieved
 - without a reduction in the rate of progress for key production and conformation traits
 - without the use of genomic selection, since that new tool was not yet available
- Genetic improvement programs work as expected and have a high Return On Investment
- Genomics should produce even better results but phenotypic recording remains essential

