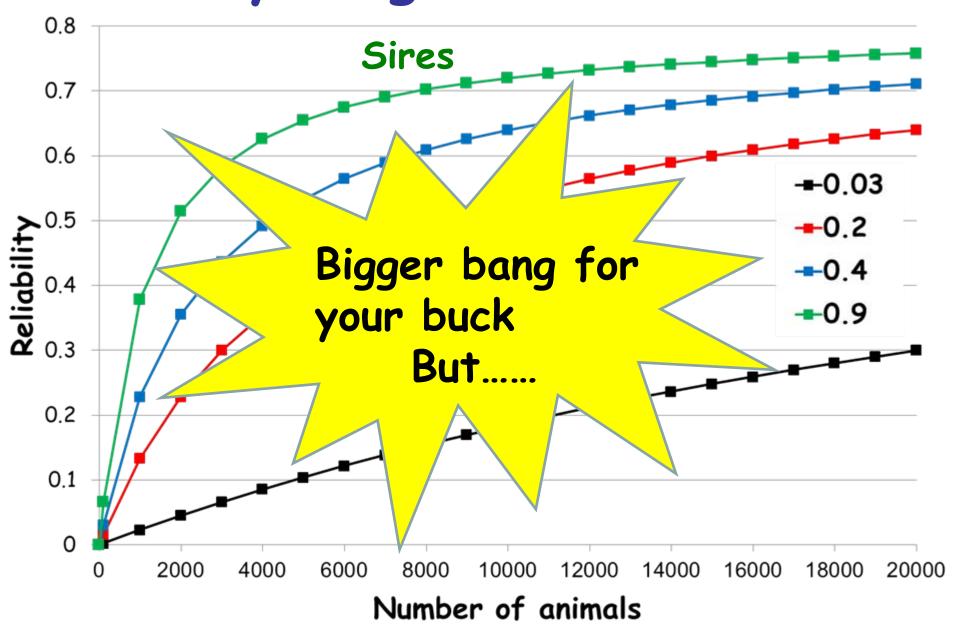
Implementation of genomic breeding values for novel traits such as feed efficiency through female nucleus reference populations


J.E. Pryce¹ & D.P. Berry²

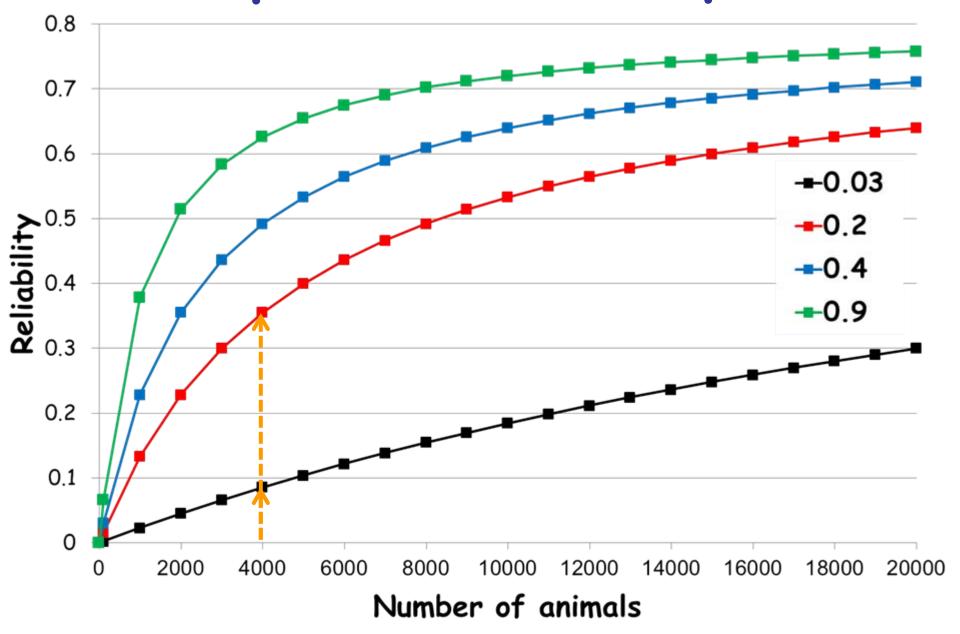
¹Department of Primary and Environmental Industries, Australia ²Teagasc, Moorepark, Ireland.

ICAR Conference, Berlin, May 2014

Accuracy of genomic evaluations

Limitations of bulls

- 1. A finite (slow growing) number of AI bulls
 - May be low AI usage (beef)
 - Natural mating bulls
- 2. High reliability bulls are usually elite
 - Need the good, the bad, and the ugly!
- 3. Limited to routinely recorded traits
 - Novel traits
- 4. Non-additive genetic effects
 - Intra- and inter-locus interactions



Considerations

- 1. What population size is required
- 2. Marginal benefit
 - Accuracy and economic benefit
- 3. Herd/animal selection

1. Population size required

1. Population size required

- theory v practice
- 1. Cost of phenotype procurement
- 2. Min reliability thresholds for publication
 - LIC, NZ publish EBV_{RFI} ~0.10
 - Re-consideration?
- 3. Bull selection risk management
 - Bull teams

Team Reliability UNREL =
$$1 - \left(\frac{1 - \overline{rel}}{n}\right)$$

$$Team\ reliability_{\text{HS}} = 1 - \left(\frac{n+3}{4n} + \frac{\overline{rel} + (n-1)rel_{SIRE}/4}{n}\right)$$

2. Marginal benefit

- Is there an easier & less expensive approach??
- · What is the cost:benefit
 - May need to take cognisance of societal value
- Milk quality and milk infra-red spectroscopy (MIR)
 - Fatty acids gold standard: ~€70
 - MIR (98% accuracy for saturated fat): "free"
- · Feed intake & MIR + pedometers

3. Herd selection

- Management representative of where the genetics will be used
- Genetics representative of candidate population
- Good data recording
 - Within-herd heritability
 - Contemporary group sizes
 - The good, the bad and the ugly
 - The young (long-term) and the old (shortterm)

Cow selection procedure

- 1. Considerable genomic/genetic diversity within the reference population
 - Related to the candidate population
- 2. Phenotypic diversity

Advances in Animal Biosciences (2013), 4:3, pp 618–625 © The Animal Consortium 2013 doi:10.1017/52040470013000186

Genomic selection: the option for new robustness traits?

M. P. L. Calus^{1†}, D. P. Berry², G. Banos³, Y. de Haas¹ and R. F. Veerkamp¹

Australia - dairy

- 10,000 Holstein cows + 4000 Jersey cows
- · Cows with multiple lactations favoured
- 4-8% improvement in reliability of genomic proofs
- · 100 Ginfo herds
 - Selected on contribution of data to ADHIS
 - Genotypes on around 30k cows by June 2015
 - Designed to be an on-going reference population

Ireland - beef

- · Little AI
- ~100,000 cows + 20,000 natural mating bulls
- Genotype 15% of herd
- Ensure minority breeds represented, first lactation cows, cow rank
 - 66% data quantity: 33% phenotypic diversity
 - Genomic/genetic diversity no requirement for sire known

Ireland - beef

- · Data quantity
 - Milk yield 5, fertility, 4, calving difficulty 1, carcass traits 1
 - Within a contemporary group
 - Maximum credit of 3 lactations
- Phenotypic diversity
 - Residual from the (fixed effects in the) genetic evaluation model
 - Included mate's direct genetic effects for milk yield and calving difficulty

International reference populations

- Many novel traits are expensive to measure (e.g., feed intake)
- Global Holstein breed has a small effective population size
- Individual country datasets of insufficient size to generate accurate genomic proofs
- Combined phenotypes and genotypes and account for genotype by environment interaction

International reference populations

International genetic evaluations for feed intake in dairy cattle through the collation of data from multiple sources

- D. P. Berry,*1 M. P. Coffey,† Z. Wang,¶ D. Spurlock,** K.
- 224,174 feed intake records
 - 10,061 parity 1 to 5 records
 - 6,953 cows
 - +1,784 growing heifers
 - 9 countries

J. Dairy Sci. 97:179 http://dx.doi.org/10.3168/jds.2013-7368 © American Dairy Science Association[®], 2014.

Imputation of genotypes from low density (50,000 markers) to high density (700,000 markers) of cows from research herds in Europe, North America, and Australasia using 2 reference populations

J. E. Pryce,*†‡¹ J. Johnston,§ B. J. Hayes,*†‡ G. Sahana,# K. A. Weigel,|| S. McParland,¶ D. Spurlock,** N. Krattenmacher,†† R. J. Spelman,‡‡ E. Wall,§§ and M. P. L. Calus##

Conclusions

- Genomics will increase genetic gain
- What is the impact on other (nonrecorded) traits?
- Cost sharing through international collaboration
 - Genotypes
 - Phenotypes
 - Ideas

