

ICAR Subcommittee on Recording Devices

ICAR Roadmap for adressing Carry Over in milk recording

Clément Allain – Institut de l'Elevage Martin Burke – ICAR recording devices SC

30th May 2013

Carry over and milk recording

- Carry Over = fraction or residue of milk from a cow that contaminates the sample being taken from the subsequent cow.

1 sample \rightarrow several origins

- Variation from 2 % to 20 % depending on devices and set up (Løvendhal et al)
- Sensitive or new applications :
 - Health Diagnosis: SCC, PCR, ELISA
 - MIR spectrum
 - And lots of future applications...
- Currently no criterion for ICAR approval test on new recording devices more sensitive to C-O (AMS)

ICAR SC on Recording Devices: the Carry Over project

Project objectives

- What?

Update the ICAR guidelines to provide standardized method for measuring carry over and define acceptable limits.

— Why ?

C-O compromises sample integrity/quality and can make the test results of the milk recorded sample invalid (false positives for health test applications / problem for selection on new traits).

Stakeholders

Farmers, Dairy Herd Improvement Orgs, Breeding Evaluation Geneticists, Veterinarians, Manufacturers, Diagnostics companies, Dairy Processors, Consumer.

Project team

ICAR Recording Devices SC

- Martin Burke, IRL, ICAR Recording Devices SC (Chair)
- Uffe Lauritsen, DK, President ICAR
- Steven Sievert, USA, DHIA/QSC
- Kees de Koning, Erik Schuiling, NL, Wageningen Research
- Clément Allain, FRA, French Livestock Institute (Idele)

Research/technical experts

- Peter Løvendhal, Martin Bjerring, DK, Aarhus University
- ICAR Milk Analysis SC

Project milestones

1. Define the method for measuring carry-over

2. Define the acceptable limits

3. Recommandations on best practices to reduce Carry-Over

 Each new device (milk meter, autosampler) intented to be used in official milk recording <u>need an ICAR approval</u>

• 3 tests centres : NL, GER, FRA

Approval test

- Laboratory test: influence of flow rates, air bleed, vacuum level, tilting, etc. on measurement accuracy and sampling
- Farm test: milk measurement accuracy and sample representativeness (fat percentage)
- Currently no requirement for carry-over

Only basic method for estimating carry-over on the farm tests: correlation
between fat % difference of consecutive cows with bias (fat % of sample – fat
% of the ref. milk)

No carry-over

Doesn't work if carry-over in the reference milk

 Objective: Standard method to be used in ICAR test centres (NL, FRA and GER) for milk recording devices approvals in addition to current requirements

Protocole criteria required

- Repeatable/reproducible
- Cost effective using inputs affordable and available
- Scientifically robust in eyes of all stakeholders
- Non hazardous and environmentally safe

How? Expert advice and proposals from

- University Research facilities in Denmark (P. Lovendhal and M. Bjerring)
- MASC (Milk Analysis Sub Cttee ICAR) Christian
 Baumgartner, Harrie van den Bijgaart.
- Tracer method (fluorescein) / Water method

• When?

- Paper presented in Aarhus 2013 to wide stakholder community
- Incorporate into ICAR Section 11 Guidelines Berlin 2014

2. Define acceptable limits by test

- Objective: set limits adapted to each application
 - Different applications and different ranges of values
 - Fat (2 to 7%) and Protein content (2 to 4.5%)
 - SCC (ε to 10⁶/ml)
 - PCR (0 or 1)
 - Probably don't need the same limits for fat than for SCC or PCR

2. Define acceptable limits by test

 How? Expert advice and proposals from ICAR milk analysis sub committee

	Laboratory			On-farm At-l in e			0 n- far m In-line		
Milk analytical devices	Fre quencies	Limits F P L	Limits SCC	Frequencies	Limits F P L	Limits SCC	Frequencies	Limits F P L	Li mits SCC
Units		g/100 g	Perce nt		g/100 g	Percent		g/100 g	Percent
Instrumental fittings	'			8	,		a		
Homogenization	Monthly	0.05 (1.43 %)	None	Ye arly	0.05 (1.43 %)	None	Not relevant		
Carry-over	Monthly	1%	2 %	Ye arly	1 %	2 %	Not relevant		

3. Best practices to reduce C-O on sampling

C-O possible sources

Animal Id reliability

(visual, automatic)

Milking systems

(milking parlours, AMS)

Operators on farm

(farmer, milk recording agent, mfr technician)

Recording devices

(fixed/portable meters, Auto samplers)

Lab analysis risks

3. Best practices to reduce C-O on sampling

- Not guidelines but suitable practical guide for MROs and Mfrs
- Possible content

Best Test Day procedures to reduce C-O

- > Devices installation as specified (levels, height)
- Sampling rules (bottles emptying)
- > Equipment cleaning between animals
- > AMS : approriate set up for sampling and trained personnel

Best well known practices on milking systems and recording devices

- ➤ Minimize surfaces and hidden reservoirs
- > Use of slick surfaces
- > Best practices on sampling (ex : previous milk surplus draining)
- Compromise no C-O / no FFA (appropriate set up)

Roadmap to Berlin 2014

1. Define the method

2. Define the acceptable limits

3. Recommandations on best practices to reduce Carry-Over and discussion with stakeholders

4. Presentation and sharing in Berlin 2014

Feb - May 2013 (Aarhus)

May –Dec 2013

Dec - May 2014

May 2014 (Berlin)

Thanks for your attention!