New Phenotypes for Dairy Cattle Breeding

D.P. Berry¹, A.R. Cromie², N. McHugh¹, M. Burke², T. Pabiou², J. MacCarthy², J.F. Kearney², R.D. Evans², D. Purfield¹, J. Coyne¹, J.J. Crowley³, B.W. Wickham², F. Buckley¹, S. McParland¹

¹Teagasc, Moorepark, ²ICBF, ³University of Alberta

ICAR, MAY 2012
Terminology

- **Phenomics**
 - Discipline which focuses on methods to accurately characterise and individual

- **Phenotype**
 - Term to describe the characteristic of an animal (e.g., milk yield, growth rate, health status)
 - Fancy word for “trait”
Categories of phenotypes

1. Producer scored
2. Professionally scored
3. Technological
4. Statistical
5. Genomics
6. Next Generation
7. Monitoring / sentinel
1. Producer scored

• Producers know their animals best...and they know what they like!
• The critics
 • "Every farmer's opinion differs...."
 • Is the trait heritable?
 • "No farmer will say they've bad cattle..."
 • Genetic evaluations are based on contemporary comparison
 • Farmers also feed different diets
 • "They won't score it properly!!"
 • "That's not scientific!!"
Producer scored – examples
(Evans and Pabjou, tomorrow)

• Farmer satisfaction/workability
 - Heritability – 0.12 to 0.23
 - Genetically correlated with survival

• Dystocia
 - Heritability – 0.24

• Docility
 - Heritability – 0.07 to 0.36
Producer scored – pros and cons

• **Advantages**
 - Simple!
 - Producers know their animals the best
 - Good genetic predictor traits
 - Little marginal cost

• **Disadvantages**
 - Low heritability because of subjectivity??
 - Not true!
 - Need an easy to use low-cost system
 - SMART phones??
2. Professional

- Linear type classification
- Veterinary events
- AI services
- Hoof trimmers
-
Professional – pros and cons

• Advantages
 • Well trained professionals
 • Better quality?
 • Can fit in nicely into business plan – two-way communication avoiding duplication and generating service demand

• Disadvantages
 • Cost
 • Cost:benefit – linear type classification
 • Automation/technological alternatives?
3. Technological

• Data automatically captured although might currently not be used in phenotyping

• Milk recording
 • Milk yield, fat, protein and lactose composition
 • Milk fatty acid, lactoferrin, processing ability, energy balance, methane…….
Technological - example MIR
Technological – pros and cons

• Advantages
 • Relatively low running cost (depreciation)
 • No paper trail
 • Potentially huge data flow

• Disadvantage
 • Possible high capital cost (unless already available – milk analyser)
 • Usually high calibration cost
4. Statistical

- **BLUP**
 - Prediction of genetic merit of individuals while simultaneously adjusting for systematic environmental effects (e.g., herd, parity)

- **BLUE**
 - Estimates of systematic environmental effects

- How is your herd (first parity animals) doing even after accounting for your superior genetics?
Statistical – pros and cons

• Advantages
 • They are a by-product of genetic evaluations!!

• Disadvantages
 • Difficult to explain to end user
 • What’s the difference between BLUPs and BLUEs and herd effects??
5. Genomics

- Contribution to breeding decisions discussed elsewhere
- Personalised medicine in humans
 - BRCA1 and BRAC2 genes and link to cancer
 - Greater monitoring / prophylactic treatment
- What about cattle?
 - DNA is present from birth
 - Should we manage cattle differently based on genotype
 - We already do!!!
Genomics - examples

- Greater susceptibility to disease
 - Manage differently?
- Feed utilisation / growth rate
 - Feed differently?
 - Group similar animals together
- Milk properties
 - Product differentiation
 - Already underway - A1/A2
Genomics - pros and cons

- **Advantages**
 - Has massive potential - DNA is available from birth (and before!)

- **Disadvantages**
 - Requires huge initial investment - GxE
 - Animals are not as simple as we think
 - Technology and our biological understanding is improving
6. Next generation

Gene → transcript → protein → trait

Farmer/recorder “noise”

Phenomics

The Irish Agriculture and Food Development Authority
Next generation – pros and cons

• **Advantages**
 - Removes (some) residual noise
 - More heritable and therefore greater ΔG
 - Inexhaustible source of information

• **Disadvantages**
 - **Cost**
 - Not an issue in the future
 - Procurement of biological sample
7. Monitoring

- Breeding is cumulative and “permanent”
 - Good ???
 - Bad ???
- Why did fertility deteriorate in the Holstein?
 - But we’re now improving fertility!
- Lessons for beef breeders?
7. Monitoring

• What is the impact of current breeding goals on traits not in the breeding goal
 • Health/disease susceptibility, feed intake, environmental load, welfare....
 • How will they animals perform in the futuristic production systems (post-2015)

• Options
 • Large scale phenotyping + selection index
 • Controlled experiments
 • Selection lines
7. Monitoring - pros and cons

• **Advantages**
 - A vital insurance policy

• **Disadvantages**
 - Well-powered controlled experiments are expensive
 - Type II errors can be misleading
Conclusions

• Phenotypes have been, are, and will continue to be the most important component of a profitable production system

• Lots done….lots more to do!