New Phenotypes for Dairy Cattle Breeding

D.P. Berry¹, A.R. Cromie², N. McHugh¹, M. Burke²,
T. Pabiou², J. MacCarthy², J.F. Kearney², R.D. Evans²,
D. Purfield¹, J. Coyne¹, J.J. Crowley³, B.W. Wickham², F. Buckley¹, S. McParland¹

¹Teagasc, Moorepark, ²ICBF, ³University of Alberta

ICAR, MAY 2012

Terminology

- Phenomics
 - Discipline which focuses on methods to accurate characterise and individual
- Phenotype
 - Term to describe the characteristic of an animal (e.g., milk yield, growth rate, health status)
 - Fancy word for "trait"

Categories of phenotypes

- 1.Producer scored
- 2. Professionally scored
- 3. Technological
- 4.Statistical
- 5.Genomics
- 6.Next Generation
- 7. Monitoring / sentinel

1. Producer scored

- Producers know their animals best...and they know what they like!
- The critics
 - "Every farmer's opinion differs...."
 - Is the trait heritable?
 - "No farmer will say they've bad cattle..."
 - Genetic evaluations are based on contemporary comparison
 - Farmers also feed different diets
 - "They won't score it properly!!!"
 - "That's not scientific!!"

Producer scored - examples (Evans and Pabiou, tomorrow)

- Farmer satisfaction/workability
 - Heritability 0.12 to 0.23
 - Genetically correlated with survival
- Dystocia
 - Heritability 0.24
- · Docility
 - Heritability 0.07 to 0.36

Producer scored - pros and cons

Advantages

- Simple!
- Producers know their animals the best
- Good genetic predictor traits
- Little marginal cost

Disadvantages

- Low heritability because of subjectivity??
 - Not true!
- Need an easy to use low-cost system
 - SMART phones??

2. Professional

- Linear type classification
- Veterinary events
- · AI services
- Hoof trimmers

Professional - pros and cons

Advantages

- Well trained professionals
 - Better quality?
- Can fit in nicely into business plan twoway communication avoiding duplication and generating service demand
- Disadvantages
 - Cost
 - Cost:benefit linear type classification
 - Automation/technological alternatives?

3. Technological

- Data automatically captured although might currently not be used in phenotyping
- Milk recording
 - Milk yield, fat, protein and lactose composition
 - Milk fatty acid, lactoferrin, processing ability, energy balance, methane......

Technological – example MIR

Technological – pros and cons

- Advantages
 - Relatively low running cost (depreciation)
 - No paper trail
 - Potentially huge data flow
- Disadvantage
 - Possible high capital cost (unless already available – milk analyser)
 - Usually high calibration cost

4. Statistical

• BLUP

- Prediction of genetic merit of individuals while simultaneously adjusting for systematic environmental effects (e.g., herd, parity)
- BLUE
 - Estimates of systematic environmental effects
- How is your herd (first parity animals) doing even after accounting for your superior genetics?

Statistical - pros and cons

- Advantages
 - They are a by-product of genetic evaluations!!
- Disadvantages
 - Difficult to explain to end user
 - What's the difference between BLUPs and BLUEs and herd effects??

5. Genomics

- Contribution to breeding decisions discussed elsewhere
- Personalised medicine in humans
 - BRCA1and BRAC2 genes and link to cancer
 - Greater monitoring / prophylactic treatment
- What about cattle?
 - DNA is present from birth
 - Should we manage cattle differently based on genotype
 - We already do!!!

Genomics - examples

- Greater susceptibility to disease
 - Manage differently?
- Feed utilisation / growth rate
 - Feed differently?
 - Group similar animals together
- Milk properties
 - Product differentiation
 - Already underway A1/A2

Genomics - pros and cons

- Advantages
 - Has massive potential DNA is available from birth (and before!)
- Disadvantages
 - Requires huge initial investment GxE
 - Animals are not as simple as we think
 - Technology and our biological understanding is improving

6. Next generation

Farmer/recorder "noise"

Gene \rightarrow transcript \rightarrow protein \rightarrow trait

Phenomics

Next generation - pros and cons

- Advantages
 - Removes (some) residual noise
 - More heritable and therefore greater ΔG
 - Inexhaustible source of information
- Disadvantages
 - Cost
 - Not an issue in the future
 - Procurement of biological sample

- Breeding is cumulative and "permanent"
 Good ???
 - Bad ???
- Why did fertility deteriorate in the Holstein?
 - But we're now improving fertility!
- · Lessons for beef breeders?

7. Monitoring

- What is the impact of current breeding goals on traits not in the breeding goal
 - Health/disease susceptibility, feed intake, environmental load, welfare....
 - How will they animals perform in the futuristic production systems (post-2015)
- Options
 - Large scale phenotyping + selection index
 - Controlled experiments
 - Selection lines

7. Monitoring - pros and cons

- Advantages
 - A vital insurance policy
- Disadvantages
 - Well-powered controlled experiments are expensive
 - Type II errors can be misleading

Conclusions

- Phenotypes have been, are, and will continue to be the most important component of a profitable production system
- Lots done....lots more to do!

