

Evolution of dairy farms :

Number of dairy farms \checkmark \checkmark ... And size of dairy farms \nearrow

	BCEL Ouest (2003-2013)
Number of dairy farms	- 33 %
Number of cows/farm	+ 40 %
Milk produced/farm	+ 48 %

Evolution of dairy farming systems :

Cows produce more milk

Feed management evolution

7387 kg in 2003 **→** 8415 kg in 2013

Intensification of dairy farming system induces new problems, specific to highproducing dairy cows -> SARA : Sub-acute ruminal acidosis

I. CONTEXT

shing for the second	Prevalence of SARA	in the wor	ld	
1 A L'S	Author	Country	Prevalence	
	Kleen et al, 2013	Germany	20%	
	Kitkas et al, 2013	Greece	16%	
min and	Tajik et al, 2009	Iran	28%	
11% 22% 22%	Bramley et al, 2008	Australia	8%	
5 million for the former of the	Morgante et al, 2007	Italy	-	
	O'Grady et al, 2008	Ireland	11%	
and 20 hours of	Enemark et al, 2001	Denmark	22%	
	rad for			
		Between cows ar SARA	8 and 28 e impacted	% of I by

SARA is currently considered as one of the most important nutritional diseases which impact high-producing dairy cows (*Plaizier et al, 2009*).

Objective of the study:

•To get new knowledge of SARA in commercial dairy farms

•To confirm risk factors existing in bibliography

•To assess the reliability of milk fat and protein contents as predictor of SARA

•Study of SARA in dairy cows using pH measurements obtained on ruminal fluid samples collected by a stomach tube. Prevalence, incidence and risk factors of the disease in commercial farms.

PART 2

•Study of SARA in dairy cows using milk fat and protein contents obtained by individual milk recording. Prevalence, incidence, and risk factors of the disease in commercial farms.

III. MATERIAL & METHODS – Part 1

2

150 DIM

concentrates:

between 5-50 DIM

Selection of herds according to:

1

•Presumption of acidosis Presence of cow headlocks •Breeder's agreement

Signs of acidosis: Yellow, liquid faeces and presence of air bubbles ; Decrease of milk fat content : Low rumen filling despite a diet that matches animal requirements ; High

concentrate level

Cows with biggest

Selection of 12 cows per

herd according to diet:

•TMR: cows between 100-

Individual distribution of

of ingestion or capacity COWS with biggest quantities of concentrates

Measurements and observations on the farm:

Bretagne **Conseil Elevage** Ouest Créateur de valeur, naturellement®

•Collection of rumen juice sample by oro-ruminal probe

- •pH measurement
- Redox potential determination
- •Rumen fill

3

COWS

- •Body condition score
- Faeces evaluation
- Diet evaluation
- •Breeder questionnaire

+ milk recording

III. MATERIAL & METHODS – PART 2

Objective of the part 2:

Assessment of the reliability of milk fat and protein contents as predictor of SARA

Milk recording database

780 000 analyses 360 000 cows (< 120 DIM) 6467 herds Fat, protein, cells, milk production

Indicator 1 : Fat/Protein < 1 :</pre>

The cow is affected by SARA if fat/protein ratio is strictly lower than 1.

Indicator 2 : 0 < Fat - Protein < 3 :

The cow is affected by SARA if fat - protein is between 0 and 3.

Indicator 3 : Fat < 35 :

The cow is affected by SARA if fat rate is strictly lower than 35 g/kg of milk.

IV. RESULTS-PART 1

Number of herds : 12	Farm characteristics				
	Average	Min	Max		
Number of cows	63	42	130		
Productivity (kg)	8966	7422	10163		

Number of cows: 144	Cow characteristics		
	Average	Min	Max
Number of lactations	2,4	1	>3
Days in milk	90	7	238
Daily milk production (kg)	34	16	55
Milk fat (g/kg)	37	21	65
Milk protein (g/kg)	30	22	37

IV. RESULTS – PART 1

SARA < 5.5 < Marginal SARA < 5.8 < Normal situation

Valid for the ruminocentesis method (Garret et al., 1999)

$\mathbf{\Lambda}$	Necessary	adap	tation	of	рН
<u>· `</u>	thresholds	for	stoma	ch	tube
	method				

Authors	pH difference
Hollberg (1984)	0.36
Rousseau et al (1989)	1.04
Brugère et al (1990)	0.97
Hofirek and Hass (2000)	0.7
Duffiel et al (2004)	0.35

Average difference: 0.68

Prevalence of SARA

_				Thresholds			
	pH class	Nb of cows	Nb of cows %	5.9	6.0	6.1	6.2
	> 7	32	22.38 %	97.90 % 97.90 2.10 % 2.10			
]6.8-7.0]	44	30.77 %			02 01 %	84.61 %
]6.5-6.8]	48	33.57 %		97.90 %	95.01 %	
]6.4-6.5]	9	6.29 %				
]6.3-6.4]	7	4.90 %				13.29 %
]6.2-6.3]	0	0.00 %			6.99 %	
]6.1-6.2]	3	2.10 %		2.10 %		
]6.0-6.1]	0	0.00 %				2.40.0/
]5.9-6.0]	0	0.00 %		0 %	0 %	2.10 %
	<5.9	0	0.00 %	0 %			
	SARA Marginal SARA Normal pH					al pH	

→ Less than 3 % of the animals of the study present low pH characteristic of SARA

IV. RESULTS – PART 1

Correlation observation of animals – ruminal pH:

No significant correlations

Significant correlation : -0,24

Correlation feeding – ruminal pH:

Different effects were studied: -Type of ration -Type of complementation -Quantity of concentrate/feeding -Method of distribution -Straw incorporation -Feeding refuse management -Bicarbonate consumption 1 significant correlation: Quantity of concentrate (-0,23)

Correlation milk production – ruminal pH:

Individual level	Correlation with pH	P-value	significance
Milk production	0,077	0,381	NS
Milk Fat	0,039	0,658	NS
Milk Protein	-0,099	0,262	NS
Somatic Cell count	0,130	0,161	NS

Monthly prevalence according to the three indicators tested (April 2013 – April 2014)

IV. RESULTS – PART 2

Sensitivity – specificity of the three indicators

143 ruminal PH data (17 < 6,5)

0

→ Insufficient predictive quality to detect animals with lower ruminal pH

V. DISCUSSION & CONCLUSION

New knowledge, but also new questions ...

Thank you for listening